

034115

PHOSPHORUS

Lambda User Controlled Infrastructure for European Research

Integrated Project

Strategic objective:

Research Networking Testbeds

Deliverable reference number D3.8

Final Report on the achievements and results of WP3

Due date of deliverable: 2008-11-30

Actual submission date: 2008-11-30

Document code: Phosphorus-WP3-D3.8

Start date of project: Duration:

October 1, 2006 30 Months

Organisation name of lead contractor for this deliverable:

Fraunhofer-Gesellschaft zur Fºrderung der angewandten Forschung e.V.

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission

Services)

RE Restricted to a group specified by the consortium (including the Commission

Services)

CO
Confidential, only for members of the consortium (including the Commission

Services)

Final Report on the achievements and results of WP3

Project: Phosphorus

Deliverable Number: D3.8

Date of Issue: 30/11/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.8

 ii

Abstract

The final report will summarize the results and achievements of WP3, in particular the middleware integration,

the integration of the middleware layer and the network layer, and the deployment and behaviour of the

applications in the optical testbed.

 Final Report on the achievements and results of WP3

Project: Phosphorus

Deliverable Number: D3.8

Date of Issue: 30/11/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.8

 3

Table of Contents

0 Executive Summary 6

1 Overview 7

1.1 Work package objectives and main tasks 7

1.2 Integrated Approach 8

2 UNICORE 10

3 MetaScheduling Service 12

3.1 Summary of the achievements 15

4 Resource Selection Service 17

4.1 Testbed description 17

4.2 Ontology design 17

4.3 Tests within the Jena Environment 17

4.4 Summary of the achievements 19

5 G
2
MPLS 20

5.1 GĮMPLS overlay model 21

5.2 GĮMPLS integrated model 21

5.3 The G-OUNI interface 21

5.4 Communication with the GĮMPLS layer 22

5.5 Summary of the achievements 22

6 INCA middleware 24

6.1 Summary of the achievements 25

7 Adaptation, deployment and tests of the PHOSPHORUS application suite 27

7.1 WISDOM 27

7.1.1 Short introduction 27

7.1.2 Planned actions 28

7.1.3 Achievements and results 28

7.1.4 Summary of the achievements 36

Final Report on the achievements and results of WP3

Project: Phosphorus

Deliverable Number: D3.8

Date of Issue: 30/11/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.8

 4

7.2 KoDaVis 36

7.2.1 Introduction 36

7.2.2 Extensions after the first wave of experiments 37

7.2.3 Testbed experiments 39

7.2.4 Summary of the achievements 41

7.3 TOPS 41

7.3.1 Summary of the achievements 43

7.4 DDSS 44

7.4.1 Description of experiments 44

7.4.2 Summary of the achievements 45

8 Conclusions 47

9 References 49

10 Acronyms 50

Final Report on the achievements and results of WP3

Project: Phosphorus

Deliverable Number: D3.8

Date of Issue: 30/11/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.8

 5

Table of Figures

Figure 1: Integration of the MetaScheduling Service and UNICORE .. 14
Figure 2: Integration of the MetaScheduling Service and the Network Service Plane and the Control

Plane .. 15
Figure 3: Resource Selection Service Framework .. 18
Figure 4: Grid User Network Interface with grid endpoints as well as Grid middleware with Network

Provisioning Systems ... 22
Figure 5: Virtual Screening Technique ... 27
Figure 6: WISDOM workflow with stage in and stage out phase ... 29

Figure 7: Screenshot of WISDOM plug-in with specifications for a FlexX run 31
Figure 8: Screenshot of the UNICORE 6 Rich client view on the PHOSPHORUS testbed with sites

and user certificate ... 32

Figure 9: Screenshot of the UNICORE 6 Rich client view on the PHOSPHORUS testbed with job and

workload distribution (ligand database indices) ... 33
Figure 10: Screenshot of the UNICORE 6 Rich client view on the PHOSPHORUS testbed after job

termination, e.g. stdout PACK ... 35

Figure 11: Architecture of the KoDaVis application embedded in UNICORE. Green Components

have been developed in Phosphorus and have been tested successfully within the experiments. 38
Figure 12: Example setup of a KoDaVis experiment, connecting two visualization clients at PSNC

over different routes to the KoDaVis Server cluster in J¿lich. .. 39
Figure 13: Transfer statistics displayed in the KoDaVis client. .. 40
Figure 14: Data rendered at SARA Amsterdam, seen and controlled at FHG IAIS Sankt Augustin ... 42

Figure 15: TOPS network configuration between SARA and FHG using the PHOSPHORUS testbed

 ... 43

 Final Report on the achievements and results of WP3

Project: Phosphorus

Deliverable Number: D3.8

Date of Issue: 30/11/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.8

 6

0 Executive Summary

The final report will summarize the results and achievements of WP3, in particular the middleware integration,

the integration of the middleware layer and the network layer, and the results and achievements of deployment

and behaviour of the applications in the optical testbed.

.

 Final Report on the achievements and results of WP3

Project: Phosphorus

Deliverable Number: D3.8

Date of Issue: 30/11/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.8

 7

1 Overview

The final report will summarize the results and achievements of WP3, in particular the middleware integration,

the integration of the middleware layer and the network layer, and the results and achievements of deployment

and behaviour of the applications in the optical testbed.

During the period of the initial two years considered into this report the main tasks of WP3 were:

 Middleware development and adaptation (UNICORE, MetaScheduling Service (MSS), Resource

Selection Service (RSS), INCA)

 Interfacing between G
2
MPLS and Resource Management System via G-OUNI

 Integration and Evaluation of Middleware

 Adaptation, deployment and tests of the application suite selected for the PHOSPHORUS project

The report builds on this separation of tasks, and presents for each task reports on the results of and

achievements made. Thus, section 2 presents results of adaption and developments of the UNICORE system,

section 3 the results of adaption and developments of the MetaScheduling Service, in section 4 we enumerate

the results of the Resource Selection Service developments, section 5 highlights the results of the development

of the interface between middleware and G
2
MPLS, and section 6 describes the achievements so far with the

INCA middleware. Finally, in Section 7 the results of and achievements made with the four PHOSPHORUS

applications are described. The entire report is summarized in section 8, where we also draw some

conclusions.

1.1 Work package objectives and main tasks

The work-package objectives during the first 24 months timeframe were:

 Formulation of user requirements to contribute to the definition of the functions and services to be

implemented by the overall project

Final Report on the achievements and results of WP3

Project: Phosphorus

Deliverable Number: D3.8

Date of Issue: 30/11/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.8

 8

 Development and provisioning of the middleware services to orchestrate requested for an application,

i.e. network, compute resources, visualisation devices, etc.

 Integration with network layer developments (Control Plane and Grid-NPRS) with Grid middleware to

enable high performance applications running efficiently in the test-bed

 Integration with the network layer by means of the G
2
MPLS developed by workpackage 2

 Adaptation of selected Applications to showcase the benefit from the integrated test-bed environment

developed in the project

 Definition of the properties that network resources (services) should have in order to integrate

seamlessly into an environment with other grid services

 Enabling user and applications to automatically get access to the resources that match their

requirements e.g. in terms of performance and QoS.

 Enabling users and application to plan resource usage in advance and to dynamically adapt the

resource usage to the changing requirements of the application thus avoiding expensive waste of

resources.

 Managing all resources required to run an application in an integrated manner with a single service

based interface towards to user or the application respectively.

 Testing the provided networking functionality based on application use cases defined in the first project

stage and deriving requirements for extensions and enhancements to be carried out in the second 12

month period from the test-bed experiments

1.2 Integrated Approach

The experiments conducted in the reporting period aim at presenting the successful integration of the four

layers the PHOSPHORUS testbeds are built upon:

 Physical layer

 Operating systems layer

 Middleware layer

 Application layer

Final Report on the achievements and results of WP3

Project: Phosphorus

Deliverable Number: D3.8

Date of Issue: 30/11/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.8

 9

Details of the experiments are described in the deliverables D3.6 - Report on the Results of the Application

Experiments During the Final Testbed Experiments [D3.6] and D3.7 - Report on the results of the middleware

experiments during the final testbed experiment [D3.7].

The developments during the last phase of the two years also included the interface to make the physical layer

additionally accessible via the G
2
MPLS and the G.O-UNI interface between the middleware and the G

2
MPLS.

More details on G
2
MPLS can be found in the deliverable ñPreliminary Grid-GMPLS Control Plane prototypeò

[D2.5].

The approach for the integration between the middleware and G
2
MPLS is described in the ñReport on the

results of the middleware experiments during the final testbed experimentò [D3.7].

The interface between the application layer and the middleware layer, in other words how the applications may

access middleware services and through these middleware services may benefit from all layers of the

PHOSPHORUS service stack is described in several deliverables with ñReport on the Results of the Application

Experiments During the Final Testbed Experimentsò [D3.6] being the latest one.

Final Report on the achievements and results of WP3

Project: Phosphorus

Deliverable Number: D3.8

Date of Issue: 30/11/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.8

 10

2 UNICORE

For the PHOSPHORUS project we have chosen UNICORE as the middleware to be linked with both the

WISDOM and KoDaVis applications. UNICORE provides a plug-in architecture at the client side that allows for

application specific plug-ins to be included. The suitability of the plug-in concept has been evaluated for both

applications. The work on middleware design started in March 2007. While UNICORE 5 was the system for

productive use when PHOSOPHORUS started, WP3 decided to migrate to UNICORE 6 ï the web-service

based implementation of UNICORE ï for the PHOSPHORUS testbed.

The first component of the UNICORE middleware to be adapted to the KoDaVis use-case was the client. An

application specific plug-in was written that could be added to any UNICORE client via the plug-in architecture

described above. In the following, a specific service for the UNICORE server side was developed, which

allowed the creation and management of KoDaVis data server instances as well as collaborative sessions. This

service was then coupled with the graphical KoDaVis client through the UNICORE client.

The MetaScheduling Service (MSS), which is another component of the middleware landscape employed in

PHOSPHORUS, had to be integrated with UNICORE. Thus, it would be possible to co-allocate network and

Grid resources by means of the MSS and make advance reservations of UNICORE resources through the

middleware. For UNICORE, this meant to extend the interface of the target systems to expose the advance

reservation capabilities of the underlying batch system. Also, as UNICORE supports a host of batch systems,

the Target System Interface (TSI) needed to be adapted for the particular batch system running on the Grid

resource. The TSI was first developed for the Cray XD1, which was the Grid resource dedicated to

PHOSPHORUS at FZJ. The TSI had to be implemented for the combination of the Torque batch system and

Maui scheduler, when the XD1 later was replaced with another machine due to a hardware failure.

The requirements from the PHOSPHORUS application use-cases concerning work-flow support were

communicated to the core UNICORE development team and were implemented in the work-flow support of the

6.1 version of UNICORE. This new features are used in particular by the WISDOM application.

Final Report on the achievements and results of WP3

Project: Phosphorus

Deliverable Number: D3.8

Date of Issue: 30/11/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.8

 11

For training the use of UNICORE for multiple applications within the project giving all developers further insight

into the middleware, a UNICORE workshop was held at FZJ on July 25th and 26th, 2007. Further information

about features like clients, job submission, data distribution, and data staging was provided.

UNICORE 6 servers were initially installed on the Cray XD1 at FZJ. Clients are available on those sites

participating in the KoDaVis and WISDOM experiments:

 FHG

 FZJ

 PSNC

 UoESSEX

The UNICORE 6 server landscape was extended during the course of the first 24 months. FZJ created and

maintains a central UNICORE registry where all participating sites are registered. Clients can thus discover all

available UNICORE sites through this central registry. The UNICORE installation, including the additional

KoDaVis service, has also been used for demonstrations at SC07, SC08, ICT 2008 and - in an interim version -

at the Phosphorus review on December 13th, 2007 in Poznan.

UNICORE needed to be installed a second time at FZJ due to a hardware failure. This involved a number of

steps. For one, as the new resource was equipped with a different batch system, the TSI wrapper had to be

adapted to this to support the advance reservation requirements in Phosphorus. Secondly, this new installation

was taken as an opportunity to change from the demonstration certificates used previously to real Grid

certificates issued by the German DFN networkôs DFN Grid CA.

During the last period of the project the reservation interface for the Resource Selection Service was

implemented.

During the entire period the testbed implementation was following the general advances in UNICORE
middleware.

Final Report on the achievements and results of WP3

Project: Phosphorus

Deliverable Number: D3.8

Date of Issue: 30/11/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.8

 12

3 MetaScheduling Service

The MetaScheduling Service (MSS) was initially developed in the German project VIOLA. Its main purpose was

the co-allocation and reservation of compute and network resources for demanding Grid applications that used

more than one compute infrastructure.

Since the VIOLA testbed was a part of the PHOSPHORUS testbed from the very beginning MSS was selected

for the PHOSPHORUS project for the co-allocation and reservation of compute and network resources as well.

To satisfy the requirements of the applications, the different network service and control planes the MSS has to

interact with in the PHOSPHORUS testbed MSS has been extended.

The MSS is composed of a set of web-services that allow to

 find the next available slot of resources, both compute and network

 negotiate the usage of an available slot and reserve it for a user

 create a service level agreement (SLA) with the responsible software entity of the resources to reserve

such a negotiated slot (local resource management systems (RMS) in case of compute resources,

network resource provisioning systems (NRPS) in case of network resources

 monitor the SLAs

 display the state of a reservation

 cancel a reservation

For the MetaScheduling in PHOSPHORUS two different scenarios for co-allocation and reservation are

provided now:

1. The classical approach like in the VIOLA project where the MSS is aware of potential resources based

on information coming from the middleware. The MSS is negotiating with all resources to be

available for a job, talking to the local RMS and the NRPS.

Final Report on the achievements and results of WP3

Project: Phosphorus

Deliverable Number: D3.8

Date of Issue: 30/11/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.8

 13

2. The new approach of PHOSPHORUS where the GĮMPLS is aware of the resources connected to the

network and queries the MSS for availability information, reservations etc, using the web-services

of the middleware layer.

To allow an easy integration also in other web-service based middleware environments and to ease the

interoperability across different middleware systems the MSS implementation is standards-based:

 Web Service Resource Framework (WSRF from OASIS)

 Web-services Agreement (WS-Agreement from the OGF)

 Web Services Security (WS-Security from OASIS)

 Resource selection Service (OGSA-RSS from the OGF)

 Job Submission Description Language (JSDL from the OGF)

During the first months of the project the integration of MSS into the UNICORE system was enhanced, making

the overall architecture of the PHOSPHORUS middleware more consistent. Figure 1 presents the resulting

architecture. In contrast to the VIOLA approach where the MSS was using own adapters for the communication

with the local resource management systems (RMS), the MSS in this version of the integration is already using

the target system interfaces (TSI) of UNICORE to communicate with the local RMS. In order to allow also

reservations of resources and the negotiation of available time-slots for the execution of an application the TSIs

have been extended. For the communication with the UNICORE systems components the MSS uses the

UNICORE protocol language (UPL). To avoid extensive changes in the UNICORE internal communication it

was decided to use an adapter that maps the WS-Agreement interface of the MSS to the UPL interface of

UNICORE. To that end, we achieved interoperability while the internal protocol of both UNICORE and MSS

could remain unchanged. With this new architecture we additionally prepared the ground for the integration with

other middleware systems like the Globus Toolkit 4. Moreover, the ARGON NRPS is also connected using the

same adapter mechanism: the MSS WS-Agreement protocol is mapped to the ARGON web service interface.

Final Report on the achievements and results of WP3

Project: Phosphorus

Deliverable Number: D3.8

Date of Issue: 30/11/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.8

 14

Figure 1: Integration of the MetaScheduling Service and UNICORE

Based on the WP1 specification of the network service plane (NSP) the MSS adapter towards the ARGON

NRPS was replaced by an adapter for the NSP. Figure 2 shows the current architecture that was used for the

demonstrations during the first project review in December 2007 and which is now used as part of the regular

PHOSPHORUS testbed infrastructure. As Figure 2 depicts the different NRPS available in the PHOSPHORUS

network environment having an interface to the NSP while the request for network resources from the MSS is

handled by the NSP and transparently forwarded to the respective NRPS.

Figure 2 also shows the interface with the control plane and the G2MPLS developed by WP2 in the

PHOSPHORUS project. The implementation of these interfaces has been mostly done after month 18 and is

almost complete now. More details about the architecture can be found in section 5 (Task 3.3 ï Interfacing

between GĮMPLS and Resource Management System via G-OUNI).

Final Report on the achievements and results of WP3

Project: Phosphorus

Deliverable Number: D3.8

Date of Issue: 30/11/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.8

 15

Figure 2: Integration of the MetaScheduling Service and the Network Service Plane and the Control Plane

The final modifications of the MSS concerned the integration in the new, web services-based UNICORE 6,

which replaced UNICORE 5 as Grid middleware in the testbed. The modifications concerned mainly the new

security model of UNICORE 6, which made changes in the MSS interfaces to the UNICORE client and the

UNICORE gateway necessary. As a result, the middleware in the PHOSPHORUS testbed is following the WS-

Security standard now.

At month 26 of the project the MSS installation in the testbed is stable and ready to be used in the final phase

of testbed experiments. Test and potential improvements of the implementation of the interface to the network

control plane to provide middleware service to the network layer will be in the focus during this period..

3.1 Summary of the achievements

Interface between the MetaScheduling Service and the Network Service Plane

 NSP exposes a Web Service Interface

Final Report on the achievements and results of WP3

Project: Phosphorus

Deliverable Number: D3.8

Date of Issue: 30/11/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.8

 16

 Reservation of connections, also in advance

 Management of multiple connections inside one NSP service

 Queries about the state of a reservation

 Termination of a reservation

Interface between the MetaScheduling Service and the G2MPLS

 WS-Agreement has been selected as protocol and language to request co-allocations

 MSS exposes a co-allocation service

 Resulting in an SLA on the co-allocation

 Interface to G2MPLS based on BES and GLUE

User Authentication and Authorisation information (currently X.509 certificates) forwarded to the network layer

 Certificates to be used for token-based authentication and authorisation

Integration of MSS components with UNICORE 6

 WSAG4UNICORE6 features:

 Support of UNICORE 6 security

 trust delegation to support complete chain of trust between user, wsag4unicore6 adapter, and

UNICORE 6 server components

 WS-Security for trust delegation verification

 Default implementation of WS-Agreement based SLAôs

 File Stage-in / File Stage-out

 UNICORE 6 server to server single file transfers

 UNICORE BFT for stage-in / RBYTEIO for stage-out

 File Stage-in from archive / File Stage-out to archive

 Transfer of complete directory structures

 Archives are unpacked on target system (stage-in)

 Archives are created on source systems and transferred to target systems (stage-out)

 UNICORE BFT for stage-in / RBYTEIO for stage-out

The overall result is WSAG4UNICORE6 ï WS-Agreement based UNICORE 6 integration

Final Report on the achievements and results of WP3

Project: Phosphorus

Deliverable Number: D3.8

Date of Issue: 30/11/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.8

 17

4 Resource Selection Service

The Resource Selection Service (RSS) has been designed in order to allow the MetaScheduling Service (MSS)

to place a job request automatically on an appropriate computing system taking into account the specific

requirements of the job as imposed by the application to be executed.

To fulfil this requirement, the RSS framework has bee designed and implemented in WP3. This framework

consists mainly of two different ontologies, which in turn will deliver on enquiry

 a list of cluster names suitable for the job out of which the MSS selects one by negotiating, or

 an empty list in case there is non available

4.1 Testbed description

Experiments were carried out using resources of the VIOLA testbed where the MetaScheduling Service of the

PHOSPORUS testbeds is hosted. Additionally, resources of the PSNC testbed and resources of the testbed of

the University of Essex were used as targets of the resource selection. The VIOLA testbed and the PSNC

testbed are connected through a dedicated cross-border dark-fibre, the VIOLA testbed and the testbed of the

University of Essex are connected by a dedicated 1 Gbit link.

4.2 Ontology design

We have designed two different ontologies (OWL-Files: one for the requirements of the applications and one for

the offered resources of the clusters in the testbed). The classes and its instances are annotated with different

data-types and the designated values of the applicationË requirements and the properties of the computing

systems which are provided in the testbed. Report D3.7 provides more details on the ontologies.

The RSS is modelled as a Web-Service within the Jena framework, which allows running SPARQL queries

against the ontologies in a Java environment. The matching process of the results from the ontologies is

conducted in this Jena framework.

4.3 Tests within the Jena Environment

Final Report on the achievements and results of WP3

Project: Phosphorus

Deliverable Number: D3.8

Date of Issue: 30/11/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.8

 18

Only local experiments in the VIOLA testbed have been conducted so far to ensure that the RSS framework

runs properly. Since in the current design of the PHOSPHORUS testbed only one instance of the MSS running

at one of the sites serving also all other sites (actually it is running at a node at FHG) is needed to provide the

Grid Scheduler functionality to all testbed sites the resource selection capabilities are automatically available at

all testbed sites.

Figure 3: Resource Selection Service Framework

Final Report on the achievements and results of WP3

Project: Phosphorus

Deliverable Number: D3.8

Date of Issue: 30/11/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.8

 19

In fact, we tested a) the framework with each application (WISDOM, KoDaVis, and DDSS) which will be

available in the testbed. The TOPS application is only installed at two sites (SARA and FHG) where each site

has a distinct functionality and role in the setup. Thus, the application may not move around in the testbed and

TOPS is not included in the mapping. Figure 3 gives an overview on the framework at the end of month 26.

More details on the implementation and the experiments may be found in D3.7.

4.4 Summary of the achievements

Overall architecture and framework of the RSS defined and implemented

 Implementation of the OGSA-Resource Selection Service

 as a Web-Service interfacing with the MSS based on the preliminary OGF specification

 Ontologies are designed and evaluated for both

 Resource capabilities

 Application requirements

Final Report on the achievements and results of WP3

Project: Phosphorus

Deliverable Number: D3.8

Date of Issue: 30/11/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.8

 20

5 G
2
MPLS

GĮMPLS is a Network Control Plane (NCP) architecture used in PHOSPHORUS that implements the concept of

Grid Network Services (GNS). The GNS allows the provisioning of network and Grid resources in a single-step.

The goal of the GNS is to make network resources in available in a similar way as other grid resources, like

CPUs, memory, contents or OS processes.

GĮMPLS is aimed to provide functionalities related to the selection, co-allocation and maintenance of both Grid

and network resources. This goal translates in:

 Discovery and advertisement of Grid capabilities and resources of the participating Grid sites (Vsites);

 Grid and Network Service setup including:

o Coordination with the Grid local job scheduler in the middleware responsible for the local

configuration and management of the Grid job;

o Configuration of the network connections among the Vsites participating to the Grid job;

o Management of resiliency for the installed network services and possible escalation to the Grid

middleware components that could be responsible for check-pointing and recovering the whole

job;

o Advanced reservations of Grid and network resources;

 Service monitoring both for the Grid job and the related network connections.

To achieve the above mentioned goal the implementation was providing three different interfaces to support

 the GĮMPLS overlay model

 the GĮMPLS integrated model

 the G.OUNI interface

The functionality of the interfaces is briefly described below. More information about the underlying

technologies used, the frameworks and standards the implementation is based upon may be found in D3.7.

Final Report on the achievements and results of WP3

Project: Phosphorus

Deliverable Number: D3.8

Date of Issue: 30/11/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.8

 21

5.1 GĮMPLS overlay model

In G2MPLS Overlay model, the Grid layer has Grid and network routing knowledge in order to provide Grid

resource configuration and monitoring (as in its standard behaviour) plus network resource configuration and

monitoring. G2MPLS acts as an information bearer of network and Grid resources and as a configuration ñarmò

just for the network service part.

This model is intended to be mainly deployed when most of the computational and service intelligence need to

be maintained in the Grid layer for specific middleware design and functional behaviours. The Grid scheduler in

this case plays the leading role, which is the overall responsible for initiation and coordination of the reservation

process through the participating Grid sites and the network in between.

5.2 GĮMPLS integrated model

In the G2MPLS Integrated model, most of the functionalities for resource advance reservation and commit are

moved to the G2MPLS Network Control Plane. G2MPLS is responsible for scheduling and configuring all the

job parts, those related to the Grid sites and those related to the network.

Grid sites are modelled as special network nodes with specific additional Grid resource information (ref. green

and dark grey shapes in Figure 4. The resulting topology is flat and integrated with respect to the positioning of

the Grid layer against the network layer.

5.3 The G-OUNI interface

The Grid Optical User Network Interface (G.OUNI) comprises a number of procedures to facilitate on demand

as well as in-advance access to Grid services/resources by interfacing Grid end points and any Grid

middleware with any type of network resource provisioning system.

Final Report on the achievements and results of WP3

Project: Phosphorus

Deliverable Number: D3.8

Date of Issue: 30/11/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.8

 22

Grid Users Grid Application

Globus

GMPLS NRPS

Grid Resource

OBS/OPS

Physical layer

G.OUNI-N

G.OUNI-C

G2MPLS

UNICORE

G.OUNI-N

G.OUNI-C

gLITE

G.OUNI-N

G.OUNI-C

Any Grid

Middleware

G.OUNI-N

G.OUNI-C

ANY

G.OUNI-N

G.OUNI-C

Figure 4: Grid User Network Interface with grid endpoints as well as Grid middleware with Network Provisioning

Systems

The G.OUNI reference point acts as the interface between Grid End Points and the Grid Network Service

Provisioning Systems as shown in Figure 4.

5.4 Communication with the GĮMPLS layer

The gSOAP engine is used to implement a web service based communication between G.OUNI gateway and

MSS. Since the gSOAP engine does not provide support for stateful web services, currently the OGSA BES

(Basic Execution Service) protocol is foreseen as the basic protocol for the MSS-G.OUNI interaction. The

OGSA BES interface is implemented as a stateless web service. This has makes the implementation on the

G.OUNI gateway site much easier. Furthermore, UNICORE 6 provides an OGSA BES interface since version

6.1. Therefore, this functionality can be accessed directly from the GOUNI gateway.

5.5 Summary of the achievements

The interfaces implemented and available in the testbed by the end of the reporting period support both the

G
2
MPLS overlay model and the G

2
MPLS integrated model.

GĮMPLS Overlay Model

 the Network is seen as an additional Grid resource

Final Report on the achievements and results of WP3

Project: Phosphorus

Deliverable Number: D3.8

Date of Issue: 30/11/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.8

 23

 it can be used by Grid services as any other resource

 Grid services access GĮMPLS via G.OUNI interface

 this supports the more ñtraditionalò Grid approach

GĮMPLS Integrated Model

 Grid intelligence is moved to network layer

 GĮMPLS is responsible for scheduling and configuring (atomic) jobs

 Grid scheduler are still responsible for workflow execution

 Grid information (e.g. resource description of sites, availability information) is injected into GĮMPLS via

G.OUNI gateway

 Job submission to GĮMPLS via G.OUNI gateway

To realise these interfaces a number of additional steps towards the integration of MSS, UNICORE and

GĮMPLS have been performed.

In order to enable the MSS to work with UNICORE 6, the new adapter is used to make UNICORE 6

functionality accessible via WS-Agreement protocol. Since UNICORE 6 poses high requirements in terms of

security, a number of extensions were made to the MSS environment. These extensions include:

Enabling WS-Security for the MSS in order to digitally sign the SOAP messages send by the MSS client and

server components, and to validate the digital signatures of the messages received by the MSS client and

server components. Since these concepts are unknown on the network layer the MSS is bridging between

these two environments.

Enable the MSS to support UNICORE 6 trust delegations. UNICORE 6 uses SAML 2.0 assertions to delegate

trust from the issuer of a job (e.g. a user) to the entity that actually submits a job to UNICORE (e.g. a

scheduler). Therefore, additional functionality to generate UNICORE 6 trust delegations (TD) by the MSS client,

to validate TD objects via the digital message signature on the server side, and to generate and validate of trust

delegation chains is required for the MSS.

Framework properties at month 26

 Glue based interface to inject and receive routing information from/to the G
2
MPLS

 BES based interface to submit / receive Grid jobs from GĮMPLS

 integration of MSS with GĮMPLS via G.OUNI Gateway

 all required components implemented and tested

Final Report on the achievements and results of WP3

Project: Phosphorus

Deliverable Number: D3.8

Date of Issue: 30/11/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.8

 24

6 INCA middleware

As for the first layer (Data Management Layer) we have implemented and evaluated the following

functionalities:

1. Node insertion and removal

2. Distributed routing table and DHT zone maintenance

3. Application layer routing mechanism

4. Metadata insertion and removal

5. Distributed metadata base maintenance

6. Metadata insertion and data placement

7. Metadata location and data retrieval

Additionally for the second layer (Storage protocol layer) we have evaluated:

1. Point-to-point bandwidth utilization

2. ACK strategies during high rate transmissions.

3. Traffic Congestion.

4. Rate Adaptation.

5. Implementation of an Authentication Checksum in order to secure both the non-corruption of packets

and the non-spoofing.

Through the implementation we have done useful observations that have positively affected our Data

management layer. For the maintenance of a DHT and the routing tables special attention has to be paid in

order to keep the zones and the routing tables consistent. During node insertion and removal temporary

inconsistency takes place and system has to handle this situation.

The implementation of the routing mechanism affects the performance, during the routing process, and the

stability of the system in dynamic conditions. We have implemented a routing algorithm that infuses these two

parameters in INCA.

Final Report on the achievements and results of WP3

Project: Phosphorus

Deliverable Number: D3.8

Date of Issue: 30/11/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.8

 25

The hash function that used in the DHTs towards the balanced metadata placement performs well. As for the

balanced data placement small data chunks have to be used due to the variant file size of the files that inserted

in the system.

At last as replication is the only way towards a fault tolerant system special attention has to be paid on it in

order to avoid inconsistency and data loss.

As for the implementation of the Storage protocol layer our experiments we have pointed out some issues on

the testbed, as we achieved performances that are 50% less the one achieved on another testbed. The issues

are partially linked to the kind of access and hardware, but this brought to evidence some key points we are

addressing now. More details are in D3.7.

In contrast to the previous phases in the last phase INCA used simulations to evaluate the enhanced

functionality in different simulated network topologies.

The INCA system has been evaluated over extensive simulations. Instead of a custom made simulator the

OPNET Modeller was used to improve the reliability of the simulations. In this section the results of the

simulations are presented for various numbers of nodes and various underlying network topologies.

As an objective during this phase was to perform the simulations based on a realistic network model where

even the triangle inequality is violated, real round trip time measurements have been used derived from

Meridian King data set which provides RTT measurements among 2500 nodes.

The simulation experiments and their results are described in report D3.7.

Summarising the evaluation of our system, INCA successfully captures locality information, maintaining

balanced routing tables and is orthogonal to any load balance algorithm for the distribution of the keys to the

various nodes.

6.1 Summary of the achievements

Implemented and deployed in the testbed

 Storage Protocol layer, the final novell version of Storage Protocol Layer API and Storage Protocol

Layer enables

 dynamic adjustable bandwidth utilization;

 loosely coupled congestion control mechanism;

 asynchronous/synchronous transfer mode;

 object, block, chunk transfer mode;

 packet alteration monitoring

 Evaluation of the INCA system using extensive simulations with 2.500 nodes

Final Report on the achievements and results of WP3

Project: Phosphorus

Deliverable Number: D3.8

Date of Issue: 30/11/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.8

 26

 Performance

 Scalability

 Final Report on the achievements and results of WP3

Project: Phosphorus

Deliverable Number: D3.8

Date of Issue: 30/11/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.8

 27

7 Adaptation, deployment and tests of the
PHOSPHORUS application suite

7.1 WISDOM

7.1.1 Short introduction

The WISDOM use-case consists of the virtual screening techniques AutoDock and FlexX, computing

compounds of large-scale molecular dockings on targets implicated in diseases like malaria.

Figure 5: Virtual Screening Technique

 AutoDock is a suite of automated docking tools. It is designed to predict how small molecules, such as

substrates or drug candidates, bind to a receptor of a known 3D structure.

 FlexX is an extremely fast, robust, and highly configurable (FlexX-able) computer program for

predicting protein-ligand interactions.

http://autodock.scripps.edu/
http://www.biosolveit.de/FlexX/

Final Report on the achievements and results of WP3

Project: Phosphorus

Deliverable Number: D3.8

Date of Issue: 30/11/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.8

 28

More details about the PHOSPHORUS use case WISDOM and its applications are described in deliverable

D3.5, and D3.6.

7.1.2 Planned actions

Based on the experiences made during the EGEE WISDOM data challenge the goal in Phosphorus is to

implement the WISDOM workflow with UNICORE 6 in order to improve correctness, completeness and

reliability of results. Thus, both the distribution of input data and especially the transfer of result data of the

millions of docking processes from the participating sites back to the userôs site were complex, cumbersome

and therefore resulting in significant data losses. As a consequence of this we will concentrate in

PHOSPHORUS besides the test of network and middleware functionalities in the implementation of a perfect

workflow for WISDOM. Thus MSS/UNICORE 6 integration enabled executions of WISDOM jobs. More details

about the WISDOM codesô workflows and requirements for execution are described in D3.5.

7.1.3 Achievements and results

After the inspection of the first EGEE Data Challenge and their WISDOM workflow necessary changes for the

PHOSPHORUS environment were identified. As a result of this analysis different WISDOM workflow phases

were identified, which must be enabled based on MSS and UNICORE 6 integration: Stage-in, execution and

stage-out phases for each WISDOM job.

Final Report on the achievements and results of WP3

Project: Phosphorus

Deliverable Number: D3.8

Date of Issue: 30/11/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.8

 29

Figure 6: WISDOM workflow with stage in and stage out phase

For WISDOM application tests the BioSolveIT flexx-200 Testdata suite was selected and adapted to the

different data formats of both the applications AutoDock and FlexX.

Data Transfer methods

On the technical side, UNICORE 6 complies with the OASIS WSRF 1.2 and OGF JSDL 1.0 standards, provides

pluggable file transfer mechanisms with the OGSA ByteIO standard as default. The usual way of transferring a

file is, that first the client sends a SOAP message to the server, which initiates a file transfer object. The client

gets as an answer a link to this object, thus the client is enabled for direct accesses. Via methods of the object

further information and data can be exchanged. After termination of the file transfer, the link will be deleted.

This procedure is repeated for each file transfer operation.

UNICORE-ByteIO is the standard method for file transfer in UNICORE 6. It uses the feature in UNICORE to

transfer information via web services. More information about this can be found in Deliverable D3.6.

UNICORE 6 Rich Client

Final Report on the achievements and results of WP3

Project: Phosphorus

Deliverable Number: D3.8

Date of Issue: 30/11/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.8

 30

UNICORE 6 offers three different clients to the users, UNICORE Command-line Client (UCC), UNICORE Grid

Programming Environment Client (GPE) and the recently developed UNICORE 6 Rich Client. This graphical

UNICORE Client is based on the Eclipse rich client platform (RCP). This client was used to monitor the

MSS/UNICORE 6 executions of WISDOM jobs.

On each resource, appropriate operations and sub-items are available, for example a job can be created on a

target system resource, and files can be downloaded from storage resources. Before any job creation can be

performed, the authentication process should be completed successfully. For access to the PHOPHORUS site

JUGGLE the D-Grid GridKA certificate (shown in the following Figure) is needed and accepted. Security views

allow the user to manage her credentials and trusted certificates. The execution of jobs and workflows can be

monitored then in different ways and job outcomes can be fetched and visualised.

During the next sections we are concentrating on the WISDOM workflow with the following phases:

 The WISDOM stage-in phase consists of licensing (for FlexX only) and distribution of input data from a

specified input server. In the case of FlexX, these are RDF and Mol2 files. AutoDock uses Grid maps

and DPF files for execution.

 The WISDOM execution phase needs a good job control and monitoring.

 The WISDOM stage-out phase includes the transfer of the local output data (FlexX Mol2 files,

AutoDock DLG and Mol2 files) after termination from each site to a specified output server into a

directory hierarchy or a database.

 Additionally there may follow pre- and postprocessing actions, e.g. input data format conversion, output

data analysis, output data filtering.

In the following different Rich Client views are presented, showing the different phases of WISDOM application

jobs.

A SWING-based WISDOM plug-in was implemented to realize job execution via the MSS / UNICORE 6

integrated Grid middlewares. Additionally job and application specifications can be done for the WISDOM FlexX

jobs, e.g. input and output data location and specific parameters (receptor and ligand database). The following

graphic shows this plug-in.

Final Report on the achievements and results of WP3

Project: Phosphorus

Deliverable Number: D3.8

Date of Issue: 30/11/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.8

 31

Figure 7: Screenshot of WISDOM plug-in with specifications for a FlexX run

The user can easily generate jobs using and modifying default values. After these specifications the user starts

WISDOM FlexX jobs via the Submit button on the PHOSPHORUS testbed. The different workflow phases can

be monitored via the UNICORE 6 Rich client and its so-called "Grid browser" view, which shows the Grid

resources available to the user in a tree-like fashion. The following Figure shows part of the PHOSPHORUS

testbed with sites JUGGLE, PACK and ESSEX, which are the appropriate platforms for WISDOM FlexX jobs.

Final Report on the achievements and results of WP3

Project: Phosphorus

Deliverable Number: D3.8

Date of Issue: 30/11/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.8

 32

Figure 8: Screenshot of the UNICORE 6 Rich client view on the PHOSPHORUS testbed with sites and

user certificate

The screenshot shows the content of the UNICORE 6 Rich client with PHOSPHORUS testbed sites and the

used user certificate for authorization and authentication.

The next figure shows the submitted WISDOM FlexX jobs on the testbed. There is a job workload distribution

on the three participating sites. It can be recognized by the different indices, which indicate, which database

ligand entries are used for the virtual screening.

Here a very small test case with 140 ligands is used to demonstrate the MSS/UNICORE 6 integration and the

workflow of the job execution.

Final Report on the achievements and results of WP3

Project: Phosphorus

Deliverable Number: D3.8

Date of Issue: 30/11/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.8

 33

Figure 9: Screenshot of the UNICORE 6 Rich client view on the PHOSPHORUS testbed with job and workload

distribution (ligand database indices)

The indices indicate which database elements are used for the docking process. Accordingly to this the input

data is distributed to the sites of the PHOSPHORUS testbed. Data transfer of tar-files containing the required

directories and files does this.

After the transfer of the tar-files and completion of the untar-processes the directory structure for WISDOM

FlexX job execution is available on all sites and nodes containing the specific input data for each site and node.

After stage-in process is finished the FlexX job can be executed on each node.

Final Report on the achievements and results of WP3

Project: Phosphorus

Deliverable Number: D3.8

Date of Issue: 30/11/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.8

 34

When the job execution is finished, the typical output files are produced and available. Thus there are for each

site

o Exit_Code

o pnodeslist,

o stderr,

o stdout

which can be examined via the UNICORE client.

The next figure shows this part of the stdout file.

Final Report on the achievements and results of WP3

Project: Phosphorus

Deliverable Number: D3.8

Date of Issue: 30/11/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.8

 35

Figure 10: Screenshot of the UNICORE 6 Rich client view on the PHOSPHORUS testbed

after job termination, e.g. stdout PACK

After termination of the stage-out phase the output directories and files are available on the specified output

server.

To conclude, WISDOM jobs are running now on UNICORE 6 platforms on the PHOSPHORUS testbed. Jobs

are executed using the WISDOM plug-in and the UNICORE 6 Rich Client, which offers an easy, user-friendly

Graphical User Interface for pre-defined WISDOM AutoDock and FlexX runs.

WISDOM workflows are executed via the UNICORE 6 / MSS integration with stage in and stage out phase.

No user actions needed to collect output data, no data losses. In the implementation WS-Agreement was used

as a basic management protocol. Hereby the integration of MSS with UNICORE 6 is based on

WSAG4UNICORE6. In this way we offer an open, standard based architecture, which is not coupled to a

specific middleware, but actually coupled with UNICORE 6.

Final Report on the achievements and results of WP3

Project: Phosphorus

Deliverable Number: D3.8

Date of Issue: 30/11/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.8

 36

WISDOM benefits from the network performance provided transparently by the PHOSPHORUS network

layer.

During the events Supercomputing 2008 and ICT 2008 WISDOM demonstrations were done on the

PHOSPHORUS testbed. Jobs were started using the WISDOM plug-in and the Unicore 6 Rich client to execute

WISDOM jobs in a user-friendly way on the Grid showing the different workflow phases of such jobs.

7.1.4 Summary of the achievements

 Workflow support has been implemented to overcome the limitations of the EGEE data challenge

environment

 WISDOM workflows are executed via the UNICORE 6 / MSS integration with stage-in and stage-out

phase. No user actions needed to collect output data, no data losses.

 Users may start jobs via the WISDOM plugin in the UNICORE 6 Rich Client offering an easy, user-

friendly Graphical User Interface for pre-defined WISDOM AutoDock and FlexX runs.

 WISDOM applications benefit from the network performance provided transparently by the

PHOSPHORUS network layer.

7.2 KoDaVis

7.2.1 Introduction

KoDaVis enables users from various remote sites to collaborate in visualising scientific data sets. It is made up

of several components:

 Data server

 Collaboration server

 Visualisation client

 UNICORE 6 Client

For the purpose of the developments and tests conducted with this application, the data server and

collaboration server components have been installed at FZJ. Client components (visualization and UNICORE)

were deployed at various other sites. shows an experimental setup of two visualization clients both located at

PSNC for demonstrational purposes. The visualization clients could as well be located at geographically

Final Report on the achievements and results of WP3

Project: Phosphorus

Deliverable Number: D3.8

Date of Issue: 30/11/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.8

 37

dispersed sites. Any action taken by the user of either of the clients will be displayed in the other clients as well

and thus allows the collaborative visualization of data. KoDaVis is a demanding application both in terms of

latency and bandwidth. For high latencies, the user experience quickly deteriorates and may render the system

unusable. At the same time, large sets of data may have to be transmitted, which requires high bandwidth links

between KoDaVis servers and clients (~700 Mbits/s).

7.2.2 Extensions after the first wave of experiments

One of the findings during the first phase of testbed experiments with the KoDaVis application was the lack of

information about poorly performing links or partners in a collaborative session. During a session, it was

intractable to determine the cause of problems, if they occurred. Individual participants in a collaborative

visualisation session can limit the entire sessionôs performance. The endpoint with the worst performance in

terms of latency and bandwidth determines the sessionôs performance for all other participants. Therefore,

monitoring capabilities were added to various components of the KoDaVis application. These monitoring

capabilities are comprised of bandwidth monitoring of the connections between the data server and each of the

clients. This is done by and displayed in the visualisation client and only helps the local user to see problems

with his connection. Additionally, the collaboration and data servers keep track of the transfer times whenever

bursts of data are transferred to the individual clients. This performance data is then queried by the UNICORE

KoDaVis service, exposed in its properties and thus available in the KoDaVis UNICORE plug-in. The latter has

been extended to display the performance data of the individual server to client connections. A participant in a

collaborative visualization session would thus be able to determine those participants in the session that limit

the overall sessionôs performance. These participants could then be excluded from the session or informed

about problems with their network link.

Final Report on the achievements and results of WP3

Project: Phosphorus

Deliverable Number: D3.8

Date of Issue: 30/11/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.8

 38

Figure 11: Architecture of the KoDaVis application embedded in UNICORE. Green Components have been

developed in Phosphorus and have been tested successfully within the experiments.

Figure 11 is an overview of the architecture of the KoDaVis application, showing how it has been embedded

into the UNICORE middleware. While this general setup hasnôt changed from the initial reports on the

architecture, it is worth noting that the interface between the ñADS: Visitò service, which is embedded in

UNICORE and the collaboration and data servers has been greatly enhanced to allow for flexible performance

monitoring.

Performance monitoring has been implemented as an extension to the XML based exchange protocol between

the data and collaboration servers and their local clients facing UNICORE. In Figure 11 thatôs the green

connection between ADS: VISIT and the TS Data Server and TS Collaboration Server. Both servers

understand the same XML protocol, which controls the exchange of information about the data transfers. The

data and collaboration servers can be configured dynamically to send this information in certain intervals.

Final Report on the achievements and results of WP3

Project: Phosphorus

Deliverable Number: D3.8

Date of Issue: 30/11/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.8

 39

7.2.3 Testbed experiments

Figure 12: Example setup of a KoDaVis experiment, connecting two visualization clients at PSNC over different

routes to the KoDaVis Server cluster in J¿lich.

While quantitative experiments have been conducted during the first phase of experiments, the current wave of

tests has a more qualitative focus. Their purpose is to evaluate the new features, which were added in between

the two test phases. Its intention is to show their utility. During the first phase of experiments, it was still difficult

for a user to identify those participants in a collaborative visualization session that make up the bottlenecks.

Figure 13 shows the transfer statistics window of the visualization client. It is only available on the client side

where the data is provided to inform the user about the bandwidth of the connection between the data server

and his client. The diagram was created on a machine with a 100Mbits/s connection.

Final Report on the achievements and results of WP3

Project: Phosphorus

Deliverable Number: D3.8

Date of Issue: 30/11/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.8

 40

Figure 13: Transfer statistics displayed in the KoDaVis client.

To get more insight in the data transfer process and potential bottlenecks additionally the corresponding

transfer times over the same link can be displayed. The transfer times displayed in the UNICORE client plug-in

exist to bring various connection performances in relation to each other. That will be explained in the following.

When multiple clients are connected, great differences in the transfer times of the curves indicate differences in

the performances of the individual server-to-client links. Those connections posing a bottleneck can be

identified and if need be the participant informed about this or removed from the session. For each time step of

the visualization, a data set is transferred to the clients. In the diagram, you can see the time for each of these

data transfers. A detailed discussion usage and interpretation of these statistics may be found in report D3.6.

