

034115

PHOSPHORUS

Lambda User Controlled Infrastructure for European Research

Integrated Project

Strategic objective:

Research Networking Testbeds

Deliverable reference number D3.7

Report on the results of the middleware experiments

during the final testbed experiments

Due date of deliverable: 2008-09-30

Actual submission date: 2008-09-30

Document code: Phosphorus-WP3-D3.7

Start date of project: Duration:

October 1, 2006 30 Months

Organisation name of lead contractor for this deliverable:

Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission

Services)

RE Restricted to a group specified by the consortium (including the Commission

Services)

CO
Confidential, only for members of the consortium (including the Commission

Services)

Report on the results of the middleware experiments during the final testbed experiment

Project: Phosphorus

Deliverable Number: D3.7
Date of Issue: 30/09/2008

EC Contract No.: 034115
Document Code: Phosphorus-WP3-D3.7

2

Abstract

This report will summarize the results of the testbed experiments of the middleware, including in particular the

modifications of the middleware made after the first testbed phase, the experiments with the resource selection

service and the final experiments with interfacing the G
2
MPLS implementation of WP2. These experiments also

served as a preparation of the demonstration and training events planned during the Supercomputing

Conference in Austin and the ICT Conference in Lyon in November 2008. In addition experiments with the

INCA middleware in WP3 will be presented.

Report on the results of the middleware experiments during the final testbed experiment

Project: Phosphorus

Deliverable Number: D3.7

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.7

 3

Table of Contents

0 Executive Summary 5

1 Overview 6

1.1 Work package objectives 6

1.2 Integrated Approach 7

2 Development of and experiments with an interface to the G
2
MPLS 9

2.1 Testbed description 9

2.2 Test description 13

3 Resource Selection Service - developments and experiments 15

3.1 Testbed description 15

3.2 Ontology design 18

3.3 Tests within the Jena Environment 20

3.4 Example 22

4 Experiments with the INCA middlewareI 24

5 Conclusions 27

6 References 29

7 Acronyms 30

Report on the results of the middleware experiments during the final testbed experiment

Project: Phosphorus

Deliverable Number: D3.7

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.7

 4

Table of Figures

Figure 1: Topology of the VIOLA testbed .. 10

Figure 1: WP3 Middleware G2MPLS workflow, an overwiev ... 11

Figure 2: G
2
MPLS integration: G

2
MPLS plane connects to middleware to get/receive GLUE

documents describing network resources. .. 12

Figure 3: G
2
MPLS integration: Middleware client (BES client) connects to G

2
MPLS plane to

create/terminate/monitor an activity. ... 13

Figure 5: Topology of the PSNC testbed .. 16

Figure 6: Topology of the University of Essex testbed .. 17

Figure 4: Detail of the Application Ontology ... 19

Figure 5: Resource Selection Service Framework .. 23

Figure 6: Cumulative density functions of the routing table size of each node in INCA with 2500

nodes and 4 dimensions.. 24

Figure 7: Compares the network stretch of 2000 nodes in a typical CAN, and in our system 25

Report on the results of the middleware experiments during the final testbed experiment

Project: Phosphorus

Deliverable Number: D3.7

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.7

 5

0 Executive Summary

This report will summarize the results of the testbed experiments of the middleware, including in particular the

modifications of the middleware made after the first testbed phase, the experiments with the resource selection

service and the final experiments with interfacing the GMPLS implementation of WP2. These experiments also

served as a preparation of the demonstration and training events planned during the Supercomputing

Conference in Austin and the ICT Conference in Lyon in November 2008. In addition experiments with the

INCA middleware in WP3 will be presented.

.

Report on the results of the middleware experiments during the final testbed experiment

Project: Phosphorus

Deliverable Number: D3.7

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.7

 6

1 Overview

This report summarizes the modifications of the middleware provided by WP3 and the final experiments after

the first phase of testbed experiments. The main focus in the reported period is on integration with the G
2
MPLS

developed in WP2, experiments with the resource selection service (RSS), final adaptation of the middleware

towards the HARMONY system provided by WP1, and last modifications in UNICORE driven by the integration

of RSS, G
2
MPLS and HARMONY. Finally, INCA activities and results conclude the report.

During the reporting period the main tasks of WP3 were:

 Middleware development and adaptation (MetaScheduling Service (MSS), INCA)

 Interfacing between G2MPLS and Resource Management System via G-OUNI

 Integration and Evaluation of Middleware

The report builds on this separation of tasks, thus section 2 reports on the adaption and developments of the

MSS to interface with G
2
MPLS, section 3 on developments and experiments with the resource selection service

(RSS), and section 4 describes the experiments done so far with the INCA middleware. Besides the mentioned

modifications smaller modifications of the MSS were made to support workflows including pre-staging and post-

staging of application data. The entire report is summarized in section 5, which also draws some conclusions.

1.1 Work package objectives

The work-package objectives during the first 24 months timeframe were:

 Formulation of user requirements to contribute to the definition of the functions and services to be

implemented by the overall project

 Development and provisioning of the middleware services to orchestrate requested for an application,

i.e. network, compute resources, visualisation devices, etc.

Report on the results of the middleware experiments during the final testbed experiment

Project: Phosphorus

Deliverable Number: D3.7

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.7

 7

 Integration with network layer developments (Control Plane and Grid-NPRS) with Grid middleware to

enable high performance applications running efficiently in the test-bed

 Integration with the network layer by means of the G
2
MPLS developed by workpackage 2

 Adaptation of selected Applications to showcase the benefit from the integrated test-bed environment

developed in the project

 Definition of the properties that network resources (services) should have in order to integrate

seamlessly into an environment with other grid services

 Enabling user and applications to automatically get access to the resources that match their

requirements e.g. in terms of performance and QoS.

 Enabling users and application to plan resource usage in advance and to dynamically adapt the

resource usage to the changing requirements of the application thus avoiding expensive waste of

resources.

 Managing all resources required to run an application in an integrated manner with a single service

based interface towards to user or the application respectively.

 Testing the provided networking functionality based on application use cases defined in the first project

stage and deriving requirements for extensions and enhancements to be carried out in the second 12

month period from the test-bed experiments

1.2 Integrated Approach

The experiments conducted in the reporting period aim at presenting the successful integration of the four

layers the PHOSPHORUS testbeds are built upon:

 Physical layer

 Operating systems layer

 Middleware layer

 Application layer

The physical layer is now additionally accessible via the G
2
MPLS and the G.O-UNI interface between the

middleware and the G
2
MPLS. More details on G

2
MPLS can be found in the deliverable “Preliminary Grid-

GMPLS Control Plane prototype” [D2.5].

Report on the results of the middleware experiments during the final testbed experiment

Project: Phosphorus

Deliverable Number: D3.7

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.7

 8

The approach for the integration between the middleware and G
2
MPLS is described in this document in

section 2

The interface between the application layer and the middleware layer, in other words how the applications may

access middleware services and through these middleware services may benefit from all layers of the

PHOSPHORUS service stack is described in several deliverables with “Report on the Results of the Application

Experiments During the Final Testbed Experiments” [D3.6] being the latest one.

Report on the results of the middleware experiments during the final testbed experiment

Project: Phosphorus

Deliverable Number: D3.7

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.7

 9

2 Development of and experiments with an
interface to the G

2
MPLS

G
2
MPLS is a conceived as a powerful Network Control Plane solution that enhances the standard GMPLS

architecture providing single-step resource reservation, co-allocation and maintenance of both network and

Grid resources [G2MPLS].

The G
2
MPLS Control Plane can flood Grid resource information through the G

2
MPLS domains and receives

requests for Grid connections setup via G.O-UNI.

The G
2
MPLS integration into the middleware layer is aiming on enabling high performance application running

efficiently in the testbed.

2.1 Testbed description

For these experiments resources of two PHOSPORUS testbeds have been used: Resources of the VIOLA

testbed (see Figure 1) and resources of the testbed of the University of Essex (see Figure 6) were used to carry

out the experiments. The two testbeds are connected by a dedicated 1 Gbit link.

Report on the results of the middleware experiments during the final testbed experiment

Project: Phosphorus

Deliverable Number: D3.7

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.7

 10

Figure 1: Topology of the VIOLA testbed

Report on the results of the middleware experiments during the final testbed experiment

Project: Phosphorus

Deliverable Number: D3.7

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.7

 11

One standard being developed within the Open Grid Services Architecture (OGSA) is the Basic Execution

Service (BES). BES provides functionality where client can send requests to initiate, monitor and manage

computational activities. Clients define activities using the Job Submission Description Language (JSDL).

The integration of MSS and G
2
MPLS is based two web services: BESFactory and GRRService.

BESFactory is a Basic Execution Service (BES) based service.

Grid Resource Registry (GRR) service allows clients to retrieve and store data describing Grid resources. GRR

uses GLUE [GLUE] schema to store and exchange grid resource data

Both web services are written in Java. Webservice functionality is based on Axis2/XmlBeans framework. Axis2

allows generation of service skeletons from known WSDL interfaces. Develop and testing environment takes

advantage of Maven. Maven is a software project management tool with possibility of automated testing of

software (Junit, plugins for integration tests). BESFactory and GRRService consist of at least two parts: web

stack part and service implementation part. The web stack module contains pure Axis2/XMLbeans skeleton for

platform independent communication. The implementation part inherits web stack functionality and implements

actual service logic.

Basic local functionality was tested with help of Maven's build & test environment. Extended local tests were

accomplished manually. For the actual G
2
MPLS integration remote testing was performed between the FHG

site and the site in Essex (UESSEX). A test installation of the services realising the integration was done on

the Pack cluster at FHG SCAI . Incoming test requests from Essex were received and directly processed on

Pack cluster. Because of UESSEX’s strict security regulations, connection was maintained over a ssh tunnel.

Zur Anzeige wird der Quic kTime™
Dek ompressor „“

benötigt.

Zur Anzeige wird der Quic kTime™
Dek ompressor „“

benötigt.

Zur Anzeige wird der Quic kTime™
Dek ompressor „“

benötigt.

Zur Anzeige wird der Quic kTime™
Dek ompressor „“

benötigt.

Unicore

WSAG
GLUE

BES
MSS

G.OUNI

gateway
G2MPLS Client

KoDaVis
app

Figure 2: WP3 Middleware G2MPLS workflow, an overwiev

Figure 2 shows a typical workflow of a KoDaVis test case. Our workflow consists of:

1. Aim: start of a KoDaVis application. Network resources are required.

Report on the results of the middleware experiments during the final testbed experiment

Project: Phosphorus

Deliverable Number: D3.7

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.7

 12

2. Request is submitted to MSS using WS-Agreement.

3. MSS can interact with G.OUNI gateway. One of three scenarios is possible:

a. The KoDaVis client is manually choosing target resource

b. Proper target resources are chosen by GRRService

c. Target resources are chosen by G
2
MPLS

4. Returns an address of a KoDaVis service instance.

Figure 3: G
2
MPLS integration: G

2
MPLS plane connects to middleware to get/receive GLUE documents

describing network resources.

G
2
MPLS and MSS can utilize Grid Resource Registry (GRR) to store and/or retrieve data describing Grid

resources. The GRR interface consists of two functions:

 getResources() retrieves an array of already stored GLUE documents,

 publishSite() sends a GLUE document to GRRService to store it.

In a typical scenario G
2
MPLS registers a Grid resource in the GRR storage, then MSS can retrieve all

registered documents for further selection (e.g. slot based).

Report on the results of the middleware experiments during the final testbed experiment

Project: Phosphorus

Deliverable Number: D3.7

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.7

 13

Figure 4: G
2
MPLS integration: Middleware client (BES client) connects to G

2
MPLS plane to

create/terminate/monitor an activity.

The Basic Execution Service (BES) provides G.OUNI connectivity for MSS (see Figure 2). The MSS connects

to G.OUNI via BES interface (client rectangle in Figure 4) to manage a given activity. BES provides functions

like createActivity() or terminateActitivities() towards the MSS. Activity requests are forwarded to G.OUNI via

BESservice. G.OUNI responds with a BES compliant message to the MSS.

2.2 Test description

The first series of tests focussed on functionality of the interface. No tests of the non-functional properties, e.g.

temporal behaviour, have been made in this phase. This will be done during the lfollowing phase of the project.

The first remote tests in both directions were aiming on basic connectivity between the testbed sites University

of Essex and Fraunhofer SCAI. Several predefined dummy requests and responses were created to test

general web service connectivity between the testbed sites. We accomplished those tests without problems.

In second stage of the test phase, submitting and processing of meaningful data between Fraunhofer SCAI and

University of Essex was tested.

As for GRR, functionality for requesting information about sites worked fine in both directions. Requests using

getResourcesOperation()[3] returned correct response (Figure 3). This function returns a array of GLUE

documents. GLUE documents are stored on server. Sending and storing GLUE documents did also work

without problems. publishOperation()was correctly transmitting and storing GLUE documents in our test bed.

This function transmits a GLUE document to GRRService to store it. As for BESFactory, there was more

Report on the results of the middleware experiments during the final testbed experiment

Project: Phosphorus

Deliverable Number: D3.7

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.7

 14

functionality to test. After connectivity tests, we concentrated on basic functionality of functions like:

createActivity() [4] and terminateActivities() (Figure 4).

Missing BES functionality was added through extensions. Extensions have been used for adding features like

start-, end time or network bandwidth. Functions for creating and terminating jobs were correctly transmitting

and parsing proper values.

After those tests , we had to replace our web stack for BES and GRR because of merging with a different piece

of code. Basic connectivity is restored now. Our previous tests are also running smooth. We still missing BES

interface tests besides createActivity()and terminateActivities() .

Report on the results of the middleware experiments during the final testbed experiment

Project: Phosphorus

Deliverable Number: D3.7

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.7

 15

3 Resource Selection Service -
developments and experiments

The Resource Selection Service (RSS) has been designed in order to allow the MetaScheduling Service (MSS)

to place a job request automatically on an appropriate computing system taking into account the specific

requirements of the job as imposed by the application to be executed.

To fulfil this requirement, the RSS framework has bee designed and implemented in WP3. This framework

consists mainly of two different ontologies, which in turn will deliver on enquiry

 a list of cluster names suitable for the job out of which the MSS selects one by negotiating, or

 an empty list in case there is non available

3.1 Testbed description

These experiments were carried out using resources of the VIOLA testbed (see Figure 1) where the

MetaScheduling Service of the PHOSPORUS testbeds is hosted. Additionally, resources of the PSNC testbed

(see Figure 5) and resources of the testbed of the University of Essex (see Figure 6) were used as targets of

the resource selection. The VIOLA testbed and the PSNC testbed are connected through a dedicated cross-

border dark-fibre, the VIOLA testbed and the testbed of the University of Essex are connected by a dedicated 1

Gbit link.

Report on the results of the middleware experiments during the final testbed experiment

Project: Phosphorus

Deliverable Number: D3.7

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.7

 16

Figure 5: Topology of the PSNC testbed

Report on the results of the middleware experiments during the final testbed experiment

Project: Phosphorus

Deliverable Number: D3.7

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.7

 17

Figure 6: Topology of the University of Essex testbed

Report on the results of the middleware experiments during the final testbed experiment

Project: Phosphorus

Deliverable Number: D3.7

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.7

 18

3.2 Ontology design

We have designed two different ontologies (OWL-Files: one for the requirements of the applications and one for

the offered resources of the clusters in the testbed). The classes and its instances are annotated with different

data-types and the designated values of the application´ requirements and the properties of the computing

systems which are provided in the testbed (Fig 1).

The Application Ontology consists of 27 classes and 8 instances with its specific value pairs (e.g.

needOfMemory : 512, as an Integer-Type defined as MB).

The Resource Ontology consists of 14 classes and 3 instances with its specific value pairs (e.g. offersMemory :

2000, as an Integer-Type defined as MB).

Report on the results of the middleware experiments during the final testbed experiment

Project: Phosphorus

Deliverable Number: D3.7

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.7

 19

Figure 7: Detail of the Application Ontology

The RSS is modelled as a Webservice within the Jena framework, which allows running SPARQL queries

against the ontologies in a Java environment. The matching process of the results from the ontologies is

conducted in this Jena framework.

First of all we tested if the ontologies can be used in order to retrieve the specific entries (e.g. How much

memory does WISDOM need or How many nodes need to be used):

REFIX owl: <http://www.w3.org/2002/07/owl#>

 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

 SELECT ?Subject ?Predicate ?Object

 WHERE

 { ?Subject ?Predicate ?Object .

 FILTER regex(str(?Subject), "WISDOM")

As the result of this query, you will get a complete list of entries, which are all addilated to WISDOM:

 <result>

 <binding name="Subject">

 <uri>http://www.owl-ontologies.com/MSO.owl#WISDOM</uri>

Report on the results of the middleware experiments during the final testbed experiment

Project: Phosphorus

Deliverable Number: D3.7

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.7

 20

 </binding>

 <binding name="Predicate">

 <uri>http://www.owl-ontologies.com/MSO.owl#needOfMemory</uri>

 </binding>

 <binding name="Object">

 <literal datatype="http://www.w3.org/2001/XMLSchema#integer">512</literal>

 </binding>

 </result>

To retrieve entries from an OWL/RDF-File, we need a query language – in our case SPARQL, due to its

compatibility to the programming language JAVA.

The enquiry itself consist of a Simple Protocol and Query Language for RDF-Query (SPARQL):

 PREFIX owl: <http://www.w3.org/2002/07/owl#>

 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

 SELECT ?Subject ?Predicate ?Object

 WHERE {

 ?Subject ?Predicate ?Object .

 FILTER regex(str(?Subject), \"" + object + "\") .

 FILTER (datatype(?Object) = xsd:integer)

 }

With these kinds of queries it is possible to retrieve the favoured entity from the ontology.

3.3 Tests within the Jena Environment

Only local experiments in the VIOLA testbed have been conducted so far to ensure that the RSS framework

runs properly. Since in the current design of the PHOSPHORUS testbed only one instance of the MSS running

at one of the sites (actually it is running at a node at FHG) is needed to provide the Grid Scheduler functionality

to all testbed sites the resource selection capabilities are automatically available at all testbed sites.

In fact, we tested a) the framework with each application (WISDOM, KoDaVis, and DDSS) which will be

available in the testbed, and got the following results:

Wisdom:

 -------- TESTING ---------

 possible candidates for WISDOM :

 FZJ , FHG , PSNC ,

 -------- TESTING ---------

KoDaVis:

Report on the results of the middleware experiments during the final testbed experiment

Project: Phosphorus

Deliverable Number: D3.7

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.7

 21

 -------- TESTING ---------

 possible candidates for KoDaVis:

 FZJ , FHG ,

 -------- TESTING ---------

DDSS:

 -------- TESTING ---------

 possible candidates for DDSS:

 FZJ ,

As expected, the results indicate for each application the maximum number (and names) of sites, which are

suitable to run the application based on the description of the sites’ capabilities and the applications’

requirements as collected through a questionnaire beforehand. The data of the returned questionnaires were

used to create the two ontologies, which are part of the RSS framework.

Getting the results of a query takes approximately 2390msec. with the aforementioned number of classes and

instances.

As a secondary test, we extended the number of instances (+50/ontology) of the ontologies to enhance the

complexity in order to stress the algorithm. Though, the algorithm is designed to extract and compare

designated value pairs (e.g. MEMORY : VALUE) which are useful to estimate the proper cluster. Those kinds of

values (see Figure 7) are compared. Due to to those specific values, the algorithm can handle many instances

without running into an error.

However, the time to retrieve results increases up to approx. 3450msec. Thus, it increases approx. 1000msec.

per +50-instances.

As an extraordinary test, we have wilfully written b) some wrong entities in the ontologies (e.g. a wrong instance

name, less amount of memory) to see what happens with the algorithm. And as expected, the result returned is

an empty list, since there is no matching resource:

 -------- TESTING ---------

 possible candidates for WISDOM :

 -------- TESTING ---------

It is obvious that extensions of the ontologies and also those of the matchmaking algorithm must made in

compliance with the specified framework.

Report on the results of the middleware experiments during the final testbed experiment

Project: Phosphorus

Deliverable Number: D3.7

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.7

 22

3.4 Example

We would like to illustrate the aforementioned example (a) (for details of the framework see Figure 8):

The question which is sent by the MSS to the RSS, would sound in natural language like ”On which cluster may

I run the application called WISDOM?”

The first step is that the Jena framework sends a SPARQL query with WISDOM as the 'object' in its formulae to

the Ontology of Application in order to retrieve the requirements of the application.

Next, another query is sent to the Ontology of Resources with the different clusters (PSNC, FHG, FZJ) as the

'object'-part of the query.

These two results will be matched as follows:

The results contain strings, which have a XMLSchema datatype and a corresponding value. And exactly these

values will be compared if and only if the datatypes are identical. The appropriate cluster will then be chosen

accordingly to the values, and will be forwarded as a string to the MSS, which submits the job to the chosen

cluster finallly.

Report on the results of the middleware experiments during the final testbed experiment

Project: Phosphorus

Deliverable Number: D3.7

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.7

 23

Figure 8: Resource Selection Service Framework

Report on the results of the middleware experiments during the final testbed experiment

Project: Phosphorus

Deliverable Number: D3.7

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.7

 24

4 Experiments with the INCA middlewareI

In contrast to the previous phases INCA used simulations to evaluate the enhanced functionality in different

simulated network topologies.

The INCA system has been evaluated over extensive simulations. Instead of a custom made simulator the

OPNET Modeller was used to improve the reliability of the simulations. In this section the results of the

simulations are presented for various numbers of nodes and various underlying network topologies.

As an objective during this phase was to perform the simulations based on a realistic network model where

even the triangle inequality is violated, real round trip time measurements have been used derived from

Meridian King data set which provides RTT measurements among 2500 nodes.

Figure 9: Cumulative density functions of the routing table size of each node in INCA with 2500 nodes and 4

dimensions

As a proof for achieving high levels of balanced routing tables we have used the cumulative density functions of

the size of routing tables in INCA As Figure-1 demonstrates our system achieves a good level of balance in

routing tables, in contrast to other overlays. In a system with 2500 nodes almost every node has between 7 and

16 neighbours. In Table 1 we can also see the routing table sizes as system scales. Through this table it is

obvious that the routing table sizes remain almost constant thus balanced as system scales.

Report on the results of the middleware experiments during the final testbed experiment

Project: Phosphorus

Deliverable Number: D3.7

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.7

 25

 500 1000 1500 2000

0.1 7 7 7 7

0.5 8 8 9 9

0.9 11 12 13 14

Table 1: The 10th the 50th and the 90th percentile with the routing table size which has each node in a 4-
dimentional overlay for various number (500,1000,1500,2000) of nodes.

To evaluate the performance of our system when routing is carried out in INCA we compare the network

stretch with that of the CAN. We have simulated our system with 4-dimentions and found that our system’s

network stretch outperforms a typical CAN system’s stretch for 2000 nodes (Figure 2) by around 50%. In table

3 we can see the 50th percentile of stretch values for a different number of nodes.

Figure 10: Compares the network stretch of 2000 nodes in a typical CAN, and in our system

 500 1000 1500 2000

CAN 3.5 4.3 4.9 5.3

 INCA 2.3 2.6 2.8 3.1

Report on the results of the middleware experiments during the final testbed experiment

Project: Phosphorus

Deliverable Number: D3.7

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.7

 26

Table 2. The 50th percentile of stretch values that has been observed in CAN and in our system for
different number of nodes (4-dimensions).

It is spotted here that differences become larger as system scales. Summarising the evaluation of our

system, INCA successfully captures locality information, maintaining balanced routing tables and is orthogonal

to any load balance algorithm for the distribution of the keys to the various nodes.

Report on the results of the middleware experiments during the final testbed experiment

Project: Phosphorus

Deliverable Number: D3.7

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.7

 27

5 Conclusions

This report highlights the results achieved in experiments made with middleware components after

modifications based on experience and results of the previous middleware and application tests.

This report summarizes the results of the testbed experiments of the middleware, including in particular the

modifications of the middleware made after the first testbed phase, the experiments with the resource selection

service and the final experiments with interfacing the G
2
MPLS implementation of WP2. The focus was on the

G
2
MPLS integration since this was a new development during the reported period.

The results of the experiments show that the improvements of the middleware towards automated resource

selection through the Resource Selection Service deliver the expected behaviour. Now a user only needs to

specify the application that should be executed and the framework automatically selects the appropriate

resources, starts the negotiation on availability, and does the necessary reservations for the user.

With the interface between G
2
MPLS and the middleware it could be shown that the resource selection may

already start at the network layer based on the information on topology, connectivity and link status available

there. The relevant information is then passed to the middleware layer and presented to the user for the final

decision.

Finally, the INCA experiments showed in simulations the scalability and performance for a network environment

with a much larger number of nodes and links than available in the PHOSPHORUS network.

The experiments also served as a preparation of the demonstration and training events planned during the

Supercomputing Conference in Austin and the ICT Conference in Lyon in November 2008. In addition

experiments with the INCA middleware in WP3 have been presented.

Report on the results of the middleware experiments during the final testbed experiment

Project: Phosphorus

Deliverable Number: D3.7

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.7

 28

Report on the results of the middleware experiments during the final testbed experiment

Project: Phosphorus

Deliverable Number: D3.7

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: Phosphorus-WP3-D3.7

 29

6 References

[G2MPLS] “Deployment and Interoperability of the Phosphorus Grid Enabled GMPLS

 (G2MPLS)” , DOI 10.1109/CCGRID.2008.120

[D2.5] D2.5 - Preliminary Grid-GMPLS Control Plane prototype,

http://www.phosphorus.pl/wiki/images/0/00/Phosphorus-WP2-D2.5v1.0.doc

[D3.6] D3.6 Report on the Results of the Application Experiments During the Final Testbed

Experiments, http://www.phosphorus.pl/wiki/images/3/3e/Phosphorus-D3.6.pdf

[GLUE] GLUE Working Group (GLUE), http://forge.gridforum.org/sf/projects/glue-wg

[GRRService] WSDL file, http://packcs-e0.scai.fraunhofer.de/phosphorus-

wp2/services/GridResourceRegistryService?wsdl

[OGSA-BES] OGSA-BES Working Group, http://forge.gridforum.org/sf/go/projects.ogsa-bes-wg/

 http://www.scai.fraunhofer.de/index.php?id=2384&L=1

http://www.phosphorus.pl/wiki/images/0/00/Phosphorus-WP2-D2.5v1.0.doc
http://www.phosphorus.pl/wiki/images/3/3e/Phosphorus-D3.6.pdf
http://forge.gridforum.org/sf/projects/glue-wg
http://packcs-e0.scai.fraunhofer.de/phosphorus-wp2/services/GridResourceRegistryService?wsdl
http://packcs-e0.scai.fraunhofer.de/phosphorus-wp2/services/GridResourceRegistryService?wsdl
http://forge.gridforum.org/sf/go/projects.ogsa-bes-wg/
http://www.scai.fraunhofer.de/index.php?id=2384&L=1

Report on the results of the middleware experiments during the final testbed experiment

Project: Phosphorus

Deliverable Number: D3.7

Date of Issue: 29/02/2008
EC Contract No.: 034115
Document Code: Phosphorus-WP3-D3.7

30

7 Acronyms

AAA Authentication, Authorisation, Accounting

DDSS Distributed Data Storage Systems

e2e end to end

EGEE Enabling Grids for E-sciencE (European Grid Project)

FC Fibre Channel

FC-SATA Fibre Channel to SATA technology (mixed technology used in disk matrices: disk matrix have Fibre

Channel ports for hosts connectivity, but contains SATA disk drives)

GEANT2 Pan-European Gigabit Research Network

GEANT+ the point-to-point service in GEANT2

GMPLS Generalized MPLS (MultiProtocol Label Switching)

G
2
MPLS Grid-GMPLS (enhancements to GMPLS for Grid support)

G.O-UNI Grid Optical User Network Interface (integrating optical networks with grid services)

GT4 Globus Toolkit Version 4 (Web-Service based)

INCA Intelligent Network Caching Architecture

KoDaVis Tool for Distributed Collaborative Visualisation

MSS MetaScheduling Service (a Grid Level Scheduler developed at the Fraunhofer Institute SCAI)

NREN National Research and Education Network

NRMS Network Resource Management System

NRPS Network Resource Provisioning System

PoP Point of Presence

Protégé Ontology Editor and Knowledge Acquisition System

QoS Quality of Service

SNMP Simple Network Management Protocol

TOPS Technology for Optical Pixel-Streaming

TPD Tiled Panel Display

TUAM Tool for Universal Annotation and Mediation

UNI User to Network Interface

UNICORE European Grid Middleware (UNIiform Access to COmpute REsources)

VLAN Virtual LAN (as specified in IEEE 802.1p)

VIOLA A German project funded by the German Federal Ministry of Education and Research (Vertically

Integrated Optical Testbed for Large Applications in DFN)

VPN Virtual Private Network

WISDOM Wide In Silicio Docking On Malaria

