

034115

PHOSPHORUS

Lambda User Controlled Infrastructure for European Research

Integrated Project

Strategic objective:

Research Networking Testbeds

Deliverable reference number D1.8

Network Service Plane Enhancements

Due date of deliverable: 2008-09-30

Actual submission date: 2008-09-30

Document code: <Phosphorus-WP1-D1.8v1>

Start date of project: Duration:

October 1, 2006 30 Months

Organisation name of lead contractor for this deliverable:

Rheinische Friedrich-Wilhelms-Universität Bonn

 Revision 1

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)

Dissemination Level

PU Public ×

PP Restricted to other programme participants (including the Commission

Services)

RE Restricted to a group specified by the consortium (including the Commission

Services)

CO
Confidential, only for members of the consortium (including the Commission

Services)

Network Service Plane Enhancements

Project: Phosphorus

Deliverable Number: D1.8
Date of Issue: 30/09/2008

EC Contract No.: 034115
Document Code: <Phosphorus-WP1-D1.8v1>

2

Abstract

Since its first prototype presented in Deliverable D1.5, some major enhancements have been added to the Network Service Plane

implementation. These include possibilities of distributing the interdomain functionality to improve failure resilience and scalability,

integration of AAA concepts developed within WP4, multi-constraint support, malleable reservations for data transfers, a notification

framework to eliminate the need for polling status changes in regular intervals, and some other minor enhancements. This deliverable

describes the new prototype.

Network Service Plane Enhancements

Project: Phosphorus

Deliverable Number: D1.8
Date of Issue: 30/09/2008

EC Contract No.: 034115
Document Code: <Phosphorus-WP1-D1.8v1>

3

Table of Contents

0 Executive Summary 5

1 Foreword about the Harmony system 6

2 Distributing NSP/IDB functionality 9

2.1 Hierarchical NSP 9

2.1.1 Basic functionality 9

2.1.2 Forwarding requests to parent IDB 10

2.2 Peer-to-peer NSP 11

2.3 Automatic Topology Exchange 11

3 Authentication and Authorization 12

3.1.1 Security AAI – Details 15

4 Multi-Constraint Support 19

4.1 Bandwidth Management 19

4.2 Multi-Technology support 19

4.3 Abstract Domain Topology 20

5 Malleable reservations 21

5.1 Malleable reservation setup 21

5.1.1 Path computation and choice of bandwidth 22

5.1.2 Bandwidth adaptation 22

5.1.3 Availability checking 22

5.1.4 Reservation 23

6 Notification framework 23

7 Further enhancements 24

7.1 Cached communication and locking concurrent reservation requests 24

7.1.1 Cached communication between IDB and NRPS 24

7.1.2 Locking concurrent reservations request 27

7.2 Parallelized communication 27

Network Service Plane Enhancements

Project: Phosphorus

Deliverable Number: D1.8

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: <Phosphorus-WP1-D1.8v1>

 4

7.3 DNS-Lookup 28

8 Conclusions and Outlook 31

9 References 33

10 Acronyms 34

Table of Figures

Figure 1.1: Simple Harmony system set up. .. 8

Figure 2.1: Simple hierarchical architecture (initial NSP design) .. 9

Figure 2.2: A more complex hierarchical architecture .. 10

Figure 3.1: Typical PKI workflow. Sender is a client who signs a request message while Receiver is

the server which validates and gathers the information required for a later authorization. 13

Figure 3.2: Example of security fields inserted in a signed SOAP header for a service request

message in Harmony... 13

Figure 3.3: Block view of the security infrastructure (AAI) implemented in Harmony. 15

Figure 3.4: SOAP message of a client request ... 18

Figure 4.1: The EndpointTechnologyType .. 20

Figure 4.2: The DomainThechnologyType .. 20

Figure 5.1: Three different configurations of a malleable reservation request 21

Figure 7.1: Internals of the Inter-Domain Broker entity in the NSP. The dotted area shows the

position of the NRPS Response Cache and its interaction with the NRPS Controllers and the Harmony

NRPS Adapters. .. 25

Figure 7.2: Sequence diagram showing the two functional alternatives the NRPS Response Cache

offers: successful or failed lookups. .. 26

Network Service Plane Enhancements

Project: Phosphorus

Deliverable Number: D1.8
Date of Issue: 30/09/2008

EC Contract No.: 034115
Document Code: <Phosphorus-WP1-D1.8v1>

5

0 Executive Summary

This document describes the advances made in the Network Service Plane implementation concerning a

variety of issues. It describes the new features that have been added and gives a description on how they have

been implemented.

Network Service Plane Enhancements

Project: Phosphorus

Deliverable Number: D1.8
Date of Issue: 30/09/2008

EC Contract No.: 034115
Document Code: <Phosphorus-WP1-D1.8v1>

6

1 Foreword about the Harmony system

Work package 1 prototypes have demonstrated to be a proof of concept of the feasibility of Phosphorus’

challenges in multi-domain lightpath provisioning. These prototypes have achieved such a stability and maturity

that has made necessary the adoption of a branding name. Thus, WP1 prototypes of the Network Service

Plane, the NRPS Adapters and the service interface have been located under the umbrella of the Harmony

system.

Moreover, with this new branding name, WP1 prototypes, achievements and demonstrations can be more

effectively disseminated. Working teams in WP1 have considered several options for the branding name.

However, Harmony positioned itself as a clear, simple name easy to remember. Moreover, the name Harmony

transmits the idea of orchestration and harmonization, which is precisely what Phosphorus project aims to

settle among the heterogeneous Network Resource Provisioning Systems all around the world by means of

WP1 prototypes.

Apart from the branding name, WP1 prototypes have received new acronyms for its internal entities which

easily allow identifying layers in Harmony’s architecture. These new acronyms do not differ from the original

proposal in D1.1, but are more specific, as will be detailed in the following lines.

New Harmony acronyms

Originally, D1.1 defined only one acronym: Network Service Plane. Nevertheless, it became too generic and

vague when the complexity of the architecture arose. Moreover, this name referred to a software entity in

WP1’s first prototype, which could be misleading. At the current stage, NSP is an acronym for a real plane

populated with one or more entities called Inter-Domain Broker (IDB).

Other independent software entities existed on stage, such as the NRPS Adapters, but no acronym was set for

them. In order to provide them with an identity mark, their name was changed to the acronym HNA (Harmony

NRPS Adapter). This way, the branding name appears and the original (descriptive) name is kept. As HNAs are

set on top of each NRPS system to interoperate with the NSP, they depict a thin layer, which also received

name and acronym: the Harmony Adaptation Layer or HAL.

Finally, one of the most important developments within Phosphorus WP1 needed also a name (and acronym):

the service interface. Again, the branding name was considered and the service interface was named the

Harmony Service Interface or HSI.

Network Service Plane Enhancements

Project: Phosphorus

Deliverable Number: D1.8

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: <Phosphorus-WP1-D1.8v1>

 7

Figure 1.1 shows a simple Harmony set up with one IDB at the NSP and one NRPS which is being connected

to the NSP by means of one HNA (only one HNA allowed per NRPS). Names in the arrows are detailed hereby:

 a1. Resource reservation requests Client-to-IDB (administrator or normal user or middleware).

 a2. Topology requests Client-to-IDB (administrator only).

 b1. Resource reservation requests to NRPS (normal operation).

 b2. Topology requests IDB-to-IDB within the NSP (topology exchange).

 b3. Resource reservation requests IDB-to-IDB within the NSP (topology exchange).

 c1. Topology requests HNA-to-IDB within the NSP (topology exchange).

 c2. Resource reservation requests HNA-to-IDB (request forwarding).

 d. NRPS-dependent interface.

 e. Network device dependent interface.

Network Service Plane Enhancements

Project: Phosphorus

Deliverable Number: D1.8

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: <Phosphorus-WP1-D1.8v1>

 8

Figure 1.1: Simple Harmony system set up.

Network Service Plane Enhancements

Project: Phosphorus

Deliverable Number: D1.8

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: <Phosphorus-WP1-D1.8v1>

 9

2 Distributing NSP/IDB functionality

The new prototype offers two modes for distributing the NSP functionality to several IDBs, the “hierarchical”

mode and the “peer-to-peer” mode. These two modes can also be combined.

2.1 Hierarchical NSP

2.1.1 Basic functionality

Level 0

Level 1

Domain A
Domain A Domain Y

Domain Y
Domain B

Domain B

User endpoint

Border endpoint

A.B1 Y.B1 Y.B2 B.UB.B2

B.B1A.B2A.U

Root
Root

A.U
B.U

A.U→A.B1?

Y.B1→Y.B2?

B.B2→B.U?

A.U→A.B2?

B.B1→B.U?

A.U→B.U?

2.

3.

1.

Figure 2.1: Simple hierarchical architecture (initial NSP design)

The NSP in its original design has already implemented the hierarchical mode in its most basic form: A single

(root) IDB controls a number of domains controlled by HNAs (cf. Figure 2.1; for the terminology, cf. Section 1).

In the general case, a central “root” IDB does not only control HNAs. Instead, IDBs can aggregate underlying

domains to appear as a single domain towards higher level IDBs (cf. Figure 2.2). In the WP1 testbed, this mode

of operation is used to aggregate the two HNAs used in the VIOLA testbed – the ARGON adapter and the “Thin

NRPS” for GMPLS domains – to a single VIOLA domain towards the central IDB.

Network Service Plane Enhancements

Project: Phosphorus

Deliverable Number: D1.8

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: <Phosphorus-WP1-D1.8v1>

 10

Level 0

User endpoint

Border endpoint

Root
Root

A.U
B.U

A.U→A.B1?

Y.B1→B.U?

Level 1

Domain Y
Domain Y

Domain B
Domain B

Y.B1 Y.B2 B.UB.B2

B.B1

Domain Y/B
Domain Y/B

Domain A
Domain A

A.B1

A.B2A.U

Y.B1
B.U

B.B1

Level 2

Y.B1→Y.B2?

B.B2→B.U?

A.U→B.U?

1.

2.

3.

Figure 2.2: A more complex hierarchical architecture

In comparison to the peer-to-peer mode, the hierarchical mode of operation was rather simple to implement,

because no changes to the previously existing interfaces were required.

2.1.2 Forwarding requests to parent IDB

A new feature implemented in the hierarchical mode is the “forwarding” of requests to parent IDBs if they

contain unknown endpoints. Considering the example given in Figure 2.2, the request for the connection

A.U→B.U need not necessarily be sent to the root IDB, but might as well be sent e.g. to domain A. The IDB

controlling this domain would notice that it cannot locate the endpoint B.U and therefore forward the request to

its parent IDB, which is the IDB controlling the root domain.

In order for this mechanism to work, the reservation ID semantics had to be modified. While previously, a

reservation ID was merely a string that did not have any predefined semantics, an IDB now needs to know

whether the reservation ID references a reservation in its own database or whether it has only forwarded this ID

that it has received from its parent IDB. Therefore, the IDBs are required to add their domain names as suffixes

for all reservation IDs they generate. Considering the previous example, a reservation reply for a reservation

A.U→B.U would return an ID that ends in “@Root”, regardless of which IDB served as entry point for the

request. Now, if e.g. a cancel request is sent to the same IDB, it will know that it has to forward the request to

the parent domain again, since the reservation ID does not end in its own domain ID.

Network Service Plane Enhancements

Project: Phosphorus

Deliverable Number: D1.8

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: <Phosphorus-WP1-D1.8v1>

 11

2.2 Peer-to-peer NSP

The main novelty of the peer-to-peer mode towards the previous NSP implementation is that there is no central

IDB anymore. Every IDB is aware of all peer IDBs and knows which endpoints they are in charge of.

2.3 Automatic Topology Exchange

The NSP interfaces were defined with a centralized system in mind, whose topology information is added and

modified through an administrative interface, the Topology-WS. To reduce the difficulties of migrating to the

enhanced system as much as possible, the changes to the already defined interfaces have been kept at a

minimum. Actually, it was possible to implement the automatic topology exchange merely by adding optional

fields to the XML schema definitions, so that e.g. the DRAC adapter, whose implementation was finalized prior

to the main NSP enhancements, can still coexist with the enhanced NSP.

As service access point for update a domain’s topology information the addDomain and editDomain functions in

the Topology-WS have been identified. Since the prior is successful if and only if a domain is not yet known,

and the latter is successful if and only if a domain is already known, an addOrEditDomain function has been

added for more convenient topology exchange. This function must be implemented (additionally to the

addDomain and editDomain functions) by an IDB that wants to participate in a peer-to-peer distributed NSP,

not by HNAs.

The peer-to-peer topology exchange is implemented using only the addOrEditDomain function. Therefore, all

relevant information is contained in this function’s DomainInformationType parameter as optional fields. Legacy

HNAs registering to an IDB can still use the addDomain or editDomain functions that also have the

DomainInformationType as parameter.

The following fields have been added to the DomainInformationType:

 Sequence number: Numeric value allowing other domains to assess which domain information is

“newer” than other domain information regarding the same domain.

 Interdomain link: An interdomain link is advertised as triple (destination domain name, link name,

source TNA). The link name must be unique only with respect to the domains that are connected

through this link, i.e. a link name can be “re-used” between different domain pairs. The combination of

domain name and link name is used to identify the counterpart of an interdomain link in the domain

information of the peer domain. An interdomain link can only be added to the topology database if it is

actually “advertised” by both peers; otherwise, one of the TNAs is not known. This way of distributing

the interdomain link information was chosen, because it only requires domain administrators to

negotiate (abstract) link names, but does not require them to inform each other about specific TNAs

used. E.g., in case of a hardware failure at a specific border endpoint, the domain administrator can

Network Service Plane Enhancements

Project: Phosphorus

Deliverable Number: D1.8

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: <Phosphorus-WP1-D1.8v1>

 12

move the link endpoint to a different port (with a different TNA) and merely needs to change the domain

information distributed by its own IDB and does not need to inform the administrator of the peer IDB.

 Relationship type: By setting the value of this field either to PEER or to SUBDOMAIN, a domain can

indicate whether it is registering as a peer domain or as a subdomain.

3 Authentication and Authorization

The Harmony system has been provided with a security infrastructure, also called the Authentication and

Authorization Infrastructure (AAI), which enables the possibility of performing secure cross-layer operations. In

this case, cross-layer means from User/Middleware layer up to Network Resource Provisioning System layer,

across the different layers defined in Harmony (cf. Section 1).

The AAI designed for Harmony is based on the OASIS WS-Security [WSS] standard and Message Level

Security (MLS). This security model provides Harmony with the appropriate mechanisms for user identification

–Authentication– and permission granting over a given (set of) resource(s) –Authorization.

The usage of WSS makes Harmony compliant with XML-Signature [xmldsig] and XML-Encryption [xmlenc]

recommendations. The use of these two recommendations is driven by a Public Key Infrastructure model (PKI).

The signature and encryption are used as in the typical PKI workflow, where the client signs the SOAP

message with his private key and the server validates the signature with the client’s public key. The following

image illustrates this typical workflow.

Network Service Plane Enhancements

Project: Phosphorus

Deliverable Number: D1.8

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: <Phosphorus-WP1-D1.8v1>

 13

Figure 3.1: Typical PKI workflow. Sender is a client who signs a request message while Receiver is the server

which validates and gathers the information required for a later authorization.

MLS is implemented by adding security information to the SOAP header of the service request messages. This

information is added by using the suitable methods supplied by the Generalized AAA tool kit [GAAA-tk] libraries

provided by WP4. In the following image, part of an AAARequest field can be seen where the user has added

its Id, role and context for the service request and the given Resource he or she intends to use.

<soap:Header>

 <AAA:AAARequest xmlns:AAA="http://www.aaauthreach.org/ns/#AAA"

 xmlns:cnl="http://www.telin.nl/ns/#cnl"

 Id="CNLhashID#" version="2.0" cnl:attr1="CNL2test#">

 <AAA:Subject Id="WHO740@users.collaboratory.nl">

 <role>analyst@JobID;expert@JobID</role>

 <context>New application testing for Phosphorus</context>

 </AAA:Subject>

 <AAA:Resource>Resource element defines the target resource</AAA:Resource>

 […]

 […]

</soap:Header>

Figure 3.2: Example of security fields inserted in a signed SOAP header for a service request message in

Harmony.

Network Service Plane Enhancements

Project: Phosphorus

Deliverable Number: D1.8

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: <Phosphorus-WP1-D1.8v1>

 14

Harmony’s AAI is constructed by two main modules:

1. The Authentication (AuthN) module is responsible for identifying the user and getting its information

(mainly user identifier, role, and context). On the one hand, it adds/gets/checks user’s signature and

user’s information to the SOAP header in the service request message. This information is structured in

the form of SAML assertions [SAML]. On the other hand, AuthN module implements methods for SOAP

body encryption/decryption which are based on Public Key Infrastructure (PKI) model and X.509 user

certificates.

2. The Authorization (AuthZ) module checks/verifies which rules to apply and permissions to grant to an

already authenticated user. The AuthZ module uses the user information for accessing a policy

database and checking what policy/policies to apply for the given identity, role and context. Thus, it will

permit or refuse a given user service request after authorization. The policy database uses XACML

[XACML] language for describing the rules and actions to be taken.

In Figure 3.3, a block diagram of the components implemented in Harmony’s AAI is depicted. Note that blue

boxes are implemented specifically for Harmony and use the methods contained in the security library provided

by WP4 (yellow box). Both certificate and policy databases have been designed by WP4 following WP1

requirements for Harmony. Both contain all the needed information for Harmony to authenticate and authorize

service requests coming from the user (administration web application, Middleware, etc.).

Network Service Plane Enhancements

Project: Phosphorus

Deliverable Number: D1.8

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: <Phosphorus-WP1-D1.8v1>

 15

Figure 3.3: Block view of the security infrastructure (AAI) implemented in Harmony.

3.1.1 Security AAI – Details

3.1.1.1 Java Packages involved in AAI

The Security implementation is built in four main parts:

 harmony.common.security. This package implements the main modules and their methods for AuthN

and AuthZ.

 harmony.common.serviceinterface. This package implements the security mechanisms in the client

part of the HSI.

 harmony.common.serviceinterface.CommonServlet. This package implements the server part of

the HSI with the security capabilities.

Network Service Plane Enhancements

Project: Phosphorus

Deliverable Number: D1.8

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: <Phosphorus-WP1-D1.8v1>

 16

 harmony.ui.reservationcli. This part of the user interface implements the command line

reservation client which also uses the security infrastructure implemented under

harmony.common.security.

3.1.1.2 Authentication implementation

The implementation of the AuthN module uses SAML assertions in the service request message. SAML is an

XML-based standard for exchanging authentication that incorporates different authentication statements such

as signatures, user credentials or actions. These assertions are added in the SOAP message as set of tags

inside the SOAP header that the client adds to its request.

The authentication model with SAML is implemented in Java [java-sun]. The SOAP assertion is created as a

java object (using org.w3c.dom, it is included in the standard Java libraries). It is added as a set of different

tags in the request.

For the signature and certificate part, the implementation uses the org.apache.xml.security [apache-xml-

security]. This library provides a set of methods for the creation and management of keys or certificates for the

security sub-system.

The implementation of the user certificate database uses a Keystore Java object (java.security.Keystore). The

Keystore is a container for saving keys or certificates used in Java in secure communication environments.

The security information, as explained before, is added into the SOAP header of the service request message.

Three main data blocks can be distinguished from the security information:

 User data

 Signature data

 User certificate and encryption data

User data

These fields contain all the necessary information to perform user identification and extraction of the context of

the service request. The following table shows a detailed view of the different tags used, description and

examples:

Tags Description Example

ResourceID
(string)

The resource has the URI of the
adapter the user wants to use and the

http://testbed.ist-phosphorus.eu/viola/harmony?
source=1.1.1.1&target=2.2.2.2

Network Service Plane Enhancements

Project: Phosphorus

Deliverable Number: D1.8

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: <Phosphorus-WP1-D1.8v1>

 17

source and destination endpoints of
the reservation

ResourceID = URI_adapter +
SourceEp + DestinationEp

Action
(string)

Operation invoked by the user create-path, cancel-path, get-status, …

SubjectMap
(HashMap)

Contains the Subject parameters
(subjectID, subjectRole and
sugectContext) described below

 [test-user@localhost, student, demonstration]

subjectID
(string)

User identifier test-user@localhost

subjectRole
(string)

User role(s) Admin, student, professor, …

subjectContext
(string)

Context of the service request Demo, application-testing, …

Table 3.1: Harmony tags for user data exchange using SAML assertions.

Signature data

All the needed data for the signature is contained in these fields. They are XML-Signature compliant [xmldsig].

User certificate and encryption data

All the needed data for encryption is contained in these fields. They are XML-Encryption compliant [xmlenc].

The following image shows a full, signed SOAP header in a create reservation request message.

<soap:Header>

 <AAA:AAARequest xmlns:AAA="http://www.aaauthreach.org/ns/#AAA" xmlns:cnl="http://www.telin.nl/ns/#cnl"

 Id="CNLhashID#" version="2.0" cnl:attr1="CNL2test#">

 <AAA:Subject Id="WHO740@users.collaboratory.nl">

 <role>analyst@JobID;expert@JobID</role>

 <context>demo001</context>

 </AAA:Subject>

 <AAA:Resource>Resource element defines the target resource</AAA:Resource>

 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <ds:SignedInfo>

 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315">

 </ds:CanonicalizationMethod>

 <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"></ds:SignatureMethod>

 <ds:Reference URI="">

 <ds:Transforms>

Network Service Plane Enhancements

Project: Phosphorus

Deliverable Number: D1.8

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: <Phosphorus-WP1-D1.8v1>

 18

 <ds:Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"></ds:Transform>

 <ds:Transform

 Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments"></ds:Transform>

 </ds:Transforms>

 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"></ds:DigestMethod>

 <ds:DigestValue>9dd75eK2AFA4ZTLHqb0NTmyQKCA=</ds:DigestValue>

 </ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>

 PzZw2H3+kFxVfr99cspADgjcWBjD2U7VDKao4feD0KpqZIZpzk09deGTiXe2asgTIiO3MZrHxwv8

 ULPIJspWPbd8lZGp0BnEuwLoF1TymazH0VjsN3wFFKsUEFR4Ynjlq50nJzQzGIJzuDT+V6+aX4Wf

 GVoKBa8as4rx3wStR34=

 </ds:SignatureValue>

 <ds:KeyInfo>

 <ds:X509Data>

 <ds:X509Certificate>

 MIIB3jCCAUcCBEIGZ58wDQYJKoZIhvcNAQEEBQAwNjELMAkGA1UEBhMCTkwxGTAXBgNVBAoTEENv

 bGxhYm9yYXRvcnkubmwxDDAKBgNVBAMTA1BFUDAeFw0wNTAyMDYxODUzMTlaFw0wNTA1MDcxODUz

 MTlaMDYxCzAJBgNVBAYTAk5MMRkwFwYDVQQKExBDb2xsYWJvcmF0b3J5Lm5sMQwwCgYDVQQDEwNQ

 RVAwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBANaYCBpYVu/6Ath11/wQ7r/gqd7K+h+gtS8X

 e/KhibziMna6PTLpfUInc0z9UlJVfv2+/E0q/bHb1RYbyNHZB4TcjrOQfQTKzWeeBwSfr2TGVHcu

 8PdggbL9NzXhrD9pGzoeSy62MUb3JxrQ0dFpNrq/8dDxeKO4cB4LuThH8S2TAgMBAAEwDQYJKoZI

 hvcNAQEEBQADgYEAvw28KeGVGKzv1M3gZmah5NBzsHLAkUpjKEGZGwKDjuvCF/PMiqNdobipP49i

 Af2ZnB0f+DoaoENT4+K46MsIJPYZTCzwVOyA0FttoWVvmyUAbcAA3byk8BYF9L3ajyHbcb30Dtm1

 9/i/9mAu5eKXK+nZucsVNIxdLfwaHKrxhfE=

 </ds:X509Certificate>

 </ds:X509Data>

 <ds:KeyValue>

 <ds:RSAKeyValue>

 <ds:Modulus>

 1pgIGlhW7/oC2HXX/BDuv+Cp3sr6H6C1Lxd78qGJvOIydro9Mul9QidzTP1SUlV+/b78TSr9sdvV

 FhvI0dkHhNyOs5B9BMrNZ54HBJ+vZMZUdy7w92CBsv03NeGsP2kbOh5LLrYxRvcnGtDR0Wk2ur/x

 0PF4o7hwHgu5OEfxLZM=

 </ds:Modulus>

 <ds:Exponent>

 AQAB

 </ds:Exponent>

 </ds:RSAKeyValue>

 </ds:KeyValue>

 </ds:KeyInfo>

 </ds:Signature>

 </AAA:AAARequest>

</soap:Header>

<soap:Body>

[…]

</soap:Body>

Figure 3.4: SOAP message of a client request

3.1.1.3 Authorization implementation

The authorization module works with the GAAAPI library provided by WP4. This library provides different tools

for the implementation to a policy system, and tokens/tickets for a same context work, these tools will be used

for the authorization process,which checks the polities and it permits storing a session context.

Network Service Plane Enhancements

Project: Phosphorus

Deliverable Number: D1.8

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: <Phosphorus-WP1-D1.8v1>

 19

In the workflow, when the authentication is finished, the authorization gets the request information and checks

the user permissions with a policy DB that contains a list of policies and describes the access permitted for

each request.

For the policy specification, the authorization uses XACML. It is a declarative access control policy language

implemented in XML and a processing model, describing how to interpret the policies The XACML sentence

defines the correct access to some resource. Each sentence uses different parameters for its specification

(subjectId, subjectRole, subjectContext, action and ResourceId).

4 Multi-Constraint Support

4.1 Bandwidth Management

In the EndpointType data type that is used in the Harmony interface, the field Bandwidth of type integer is

present. The Bandwidth represents the Endpoint’s bandwidth in megabits per second. In the first

implementation of the Harmony IDB we have only administrated whether an interdomain link is in use. To

support bandwidth management in case an interdomain link can be shared over multiple connections (which is

not the case in the current implementation of the testbed) we decided to administrate the amount of megabits

per second in use.

4.2 Multi-Technology support

We have included an optional Technology field of type EndpointTechnologyType (see Figure 4.1) in the

EndpointType. The EndpointTechnologyType is a complex type consisting one or more

EndpointSupportedAdaptation. An EndpointSupportedAdaptation is a string, of which the value is an URI to an

NDL description of an Adaptation that is supported by the endpoint. All EndpointSupportedAdaptations together

exactly define the technology of an endpoint.

Network Service Plane Enhancements

Project: Phosphorus

Deliverable Number: D1.8

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: <Phosphorus-WP1-D1.8v1>

 20

Figure 4.1: The EndpointTechnologyType

Also, we have included an optional Technology field of type DomainTechnologyType in the

DomainInformationType (cf. Figure 4.2). The DomainTechnologyType is a complex type consisting of zero or

more DomainSupportedAdaptation, zero or more DomainSupportedBandwidth and one or more

DomainSupportedSwitchMatrix. A DomainSupportedAdaptation is a string of which the value is a URI to an

NDL description of an adaptation that is supported by the domain. The DomainSupportedBandwidth is of type

long and represents a bandwidth (in megabits per second) that is supported by the switching matrix of the

domain. The DomainSupportedSwitchMatrix is a string of which the value is a URI to an NDL description of a

switching matrix. The DomainSupportedSwitchMatrix defines the technology that a domain can use to make

switching decisions (e.g. Ethernet, Sonet, IP).

Figure 4.2: The DomainThechnologyType

4.3 Abstract Domain Topology

The definitions in Section 4.2 define a domain’s capabilities in a general and abstract way. We have chosen not

to specify the inner domain topology. A domain is rather viewed as a big abstract switching device with certain

capabilities. We assume that a domain is fully interconnected, which may not always be the case. As a result of

this choice, a domain cannot expose that a path between two endpoints in this domain does not exist. On the

other hand the technology types can unveil that a path between two endpoints can never be valid and thus can

be discarded.

Network Service Plane Enhancements

Project: Phosphorus

Deliverable Number: D1.8

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: <Phosphorus-WP1-D1.8v1>

 21

5 Malleable reservations

Besides the commonly used fixed reservations, the IDB now supports malleable reservations, which are an

extension or generalization of the fixed reservations. The users’ intention for such a reservation is to transfer a

certain amount of data within a given deadline. Additionally, constraints such as the minimum and maximum

bandwidth supported by the application have to be considered. Ultimately, the user is only interested when the

data transfer will start and how long it will take.

time

b
a

n
d

w
id

th

earliest start

time

deadline

time

b
a

n
d

w
id

th

earliest start

time

deadline

Figure 5.1: Three different configurations of a malleable reservation request

Figure 5.1 shows an example for three different configuration of a malleable reservation. For all three, the same

amount of data (i.e. the product of bandwidth and duration, represented by the area within a rectangle) is

transferred.

5.1 Malleable reservation setup

When a request for a malleable service is received, the IDB loops over different interdomain paths, possible

start times and bandwidths to find a set of available resources that fulfil the original request. The different steps

that are executed are described in the following subsections.

Network Service Plane Enhancements

Project: Phosphorus

Deliverable Number: D1.8

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: <Phosphorus-WP1-D1.8v1>

 22

5.1.1 Path computation and choice of bandwidth

In a first step, a path between the given user endpoints is computed. For all endpoints on the chosen

interdomain path, the feasible bandwidths are retrieved from the database. Only bandwidths which are in the

range of the minimum and maximum bandwidths provided in the request are used for the further computation. If

none of the database bandwidths fulfils the range condition, the maximum bandwidth given in the request is

used. Upon failure to create a reservation, the bandwidth is halved until the minimum bandwidth given in the

request is reached. If necessary, the same procedure is repeated for alternative paths. If no feasible path can

be found, a PathNotFoundFault is sent back to the requestor.

5.1.2 Bandwidth adaptation

Now the attempt is made to adjust all endpoints on the given path to a common bandwidth level. At the

beginning, for each endpoint the greatest feasible bandwidth is chosen, and among these, the minimum (the so

called min-max bandwidth) is taken. In the second step, the highest bandwidths are reduced according to the

technology-induced granularity until the smallest bandwidth which is equal to or greater than the min-max

bandwidth is found. This way, the highest feasible bandwidth is selected for all endpoints on the given path.

5.1.3 Availability checking

In this step the availability of the network resources is queried at the appropriate IDCs with the previously

evaluated constraints (endpoints with according bandwidth, duration and a now fixed start time). The possible

results are:

 AVAILABLE: A reservation is feasible in this IDC.

 ENDPOINT_NOT_AVAILABLE: One or more endpoints are blocked for this duration. An alternative

start time offset should be returned, which can be used for start time adaptation.

 PATH_NOT_AVAILABLE: An intradomain path is blocked for this duration. An alternative start time

offset should be returned, which can be used for start time adaptation.

 AVAILABILITY_NOT_CHECKED: No availability check has been performed (should only be returned if

other connections in the same reservation requests have already been reported as unavailable).

If one or more of the queried IDCs return a result different to AVAILABLE, the following adaptation attempts are

carried out:

1. Start time adaptation: The start time for the reservation is shifted to the maximum of all received

alternative start time offsets. If no offsets have been sent back, a default offset of one hour is used.

Network Service Plane Enhancements

Project: Phosphorus

Deliverable Number: D1.8

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: <Phosphorus-WP1-D1.8v1>

 23

After this, the availability checking will be repeated with the new start time. If the new start time and the

duration exceed the user-defined deadline, attempt 2 is carried out.

2. Bandwidth adaptation: Due to the strategy of starting with the maximal feasible bandwidth, it is now

possible to decrease the bandwidths of the participating endpoints for one level. This yields a greater

data transfer duration on the same path, but on this new bandwidth levels the endpoints or intradomain

paths may be available again. If this adaptation is successful, a new availability checking loop is started

with the original user-defined start time and the new bandwidths on the same path as before. If this

attempt should also fail, all endpoints reported as blocked are removed from the set of feasible

endpoints for path computation, and a new path computation is started (section 5.1.1).

5.1.4 Reservation

In this final step, the fixed reservations that have been verified to be available at the involved IDCs are

committed to the IDCs. The resulting fixed interdomain representation fulfils the original malleable reservation

constraints.

6 Notification framework

Originally, it was planned to use the WS-Notification framework that is part of the WSRF. However, it has

turned out that the existing WSN implementation does not meet the requirements within the Network Service

Plane. The reason is that notifications within the NSP mainly concern specific reservations, i.e. the topics are

given by the existing reservations. Therefore, it is necessary to create new topics on the fly, one for each new

reservation. After some analysis of and experimenting with the existing WSN implementation, it has been

decided that the risk is too high that enhancing it to fulfil this requirement might induce a greater effort than

creating a new, very basic notification framework implementation tailored specifically for the NSP.

Therefore, a new notification framework has been implemented which is very similar to the WSN framework.

The roles of the participating entities are those of notification producers and notification consumers. A

notification consumer merely implements a notification operation in its Reservation-WS. The parameters of this

operation are the topic (i.e. a reservation ID) and a list of ServiceStatusTypes (see [Phosphorus-D1.4]) that

inform the consumer of the new status of one or more of the services that belong to the reservation ID. This

basic mechanism eliminates the need to periodically poll systems to see whether a status has changed.

Network Service Plane Enhancements

Project: Phosphorus

Deliverable Number: D1.8

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: <Phosphorus-WP1-D1.8v1>

 24

The administration of topics and subscriptions is handled by a separate Notification-WS. A consumer wishing to

subscribe for notifications on a certain reservation simply calls the subscribe operation with a topic that is

constructed from the reservation ID and the domain ID that assigned the reservation ID. While it would be

sufficient for the current architecture to use solely the reservation ID as topic name, this approach was taken to

allow a single Notification-WS to be in charge for several domains. A subscription can be cancelled with the

unsubscribe operation.

7 Further enhancements

7.1 Cached communication and locking concurrent

reservation requests

7.1.1 Cached communication between IDB and NRPS

When coordinating multidomain reservations between heterogeneous resources, the IDB typically has to

forward multiple requests related to a single multidomain reservation to different NRPSs. But sometimes, an

IDB entity within the NSP has to forward the requests to the same domain more than once, asking for the

availability of the same network resources as the previous request. In order to avoid multiple requests asking

for the same resources and the resulting signalling overhead, a cache between the IDB and the HNAs has

been implemented.

Network Service Plane Enhancements

Project: Phosphorus

Deliverable Number: D1.8

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: <Phosphorus-WP1-D1.8v1>

 25

Figure 7.1: Internals of the Inter-Domain Broker entity in the NSP. The dotted area shows the position of the

NRPS Response Cache and its interaction with the NRPS Controllers and the Harmony NRPS Adapters.

The NRPSResponseCache stores the responses from the underlying domains for a short period of time. This

period of time is configurable by means of changing the flag cache entry timeout in the interdomain broker

properties file. When the timeout expires, the cache entry is removed automatically.

Network Service Plane Enhancements

Project: Phosphorus

Deliverable Number: D1.8

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: <Phosphorus-WP1-D1.8v1>

 26

Figure 7.2: Sequence diagram showing the two functional alternatives the NRPS Response Cache offers:

successful or failed lookups.

A cache entry contains information about the availability of a path with a given constraints inside a domain. It is,

in essence, a connectionConstraintType and the alternativeStartTime. The NRPS Response Cache is a

singleton class. The methods defined in the cache are the three basic methods regarding a cache-like

behaviour: addEntry, removeEntry and lookup. The first method inserts in the cache all the connections

provided in the isAvailableType object with their corresponding responses. It also programs the deletion of the

connections after a given interval time. The second method removes all the information stored in cache

automatically while the last method looks in the cache for a response.

Network Service Plane Enhancements

Project: Phosphorus

Deliverable Number: D1.8

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: <Phosphorus-WP1-D1.8v1>

 27

7.1.2 Locking concurrent reservations request

When coordinating multi-domain advanced resource reservations, the entities in the service plane (IDBs) could

receive multiple concurrent incoming requests. This might lead to situations where several requests, if

processed sequentially, could all be fulfilled, but are denied when processed in parallel, because they block

each others resources. To prevent such situations, an exclusive create reservation mode has been

implemented. This mode can be enabled in the corresponding properties file of an IDB. In case this exclusive

create reservation flag is enabled, an IDB blocks all incoming reservation requests while one createReservation

is processed.

7.2 Parallelized communication

The module of the NSP in charge of the communication with the subdomains or NRPSs is the NRPS Manager.

This module is invoked internally by other blocks of the NSP when one or more messages have to be sent to

one or more NRPSs. When the manager is invoked, it creates a proxy for each NRPS web service, sends the

message and waits for the responses. Afterwards, it returns all responses to the invoker.

The responses received in reply to these requests have to be analysed to take further action or to construct a

response in reply to a request received on the reservation interface of the NSP. However, some types of replies

require immediate action. If a single request in a series of CreateReservation fails, then a rollback is required.

Hence, the reservations that have already been established in other domains must be cancelled.

The requests to the NRPS manager are composed by tuples <Domain, MessageToSend>, and the responses

consist of pairs <Domain, ResponseReceived>. All these responses coming from each NRPS adapter are

returned to the invoking request handler. In the case that the overall reservation process has not been

successful, the NRPS manager will create the necessary CancelReservation requests to domains that have

reported a successful reservation creation.

As depicted in previous deliverables, the second version of this NRPS manager is a threaded version, not

sequential. This has been developed with the idea of avoiding large waiting times by sending the requests to all

the NRPSs in parallel. This way of sending the messages allows all the NRPS to receive the request nearly at

the same time and they can work concurrently, shortening the overall response time of the system.

The NRPS Controller has been developed as a thread extending class. It contains all the information required

to contact the NRPS, since it is used to communicate with an instance of an adapter/NRPS. Inside the

components of this class, we would like to mention the proxy for the reservation web service, the endpoint

references to the topology and reservation web services, the operation to send and the message to send. One

NRPS Controller thread is created when one request has to be sent to the NRPS. The NRPS Controller

information is filled and the thread starts to work in a parallel way.

Network Service Plane Enhancements

Project: Phosphorus

Deliverable Number: D1.8

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: <Phosphorus-WP1-D1.8v1>

 28

7.3 DNS-Lookup

When creating multidomain reservations, the user has to identify the involving source and target endpoints. As

described in Section 1.2 of [Phosphorus-D1.6] the Service Plane operates on OSI Layer 2 and hence identifies

the endpoints by so called TNAs, identifiers that follow the IPv4 syntax. Normally, the end user who requests a

path is only aware of the involved IP addresses or FQDNs, but does not know the corresponding TNA

addresses. In the past the user was forced to look on a map that mirrors the current testbed in order to map

between TNAs and IPs.

The newly implemented lookup technique had to meet the following requirements:

1. Do not change the internal communication

2. Resolve both IP addresses and host names into TNAs

3. Find a scalable solution

Therefore, the WP1 client library (used by the GUI, the CLI, and other implementations) was extended to

resolve given endpoint identifiers (name or IP) to valid TNA addresses by using TXT DNS records. E.g.:

zam668.viola-testbed.de. IN TXT TNA=10.7.12.108

72.0.0.10.ip-lookup.viola-testbed.eu. IN TXT TNA=10.7.12.108

Code 4.4.1: Example DNS records

$ nslookup -q=txt zam668.viola-testbed.de

Server: 131.220.6.18

Address: 131.220.6.18#53

Non-authoritative answer:

zam668.viola-testbed.de text = "TNA=10.7.12.108"

Code 4.4.2: DNS lookup example

Based on these DNS records the following algorithm tries to find the corresponding TNA:

Network Service Plane Enhancements

Project: Phosphorus

Deliverable Number: D1.8

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: <Phosphorus-WP1-D1.8v1>

 29

1 $tna = getTNA($nameOrIP);

2 if (!$tna && !isIPorTNA($nameOrIP)) {

3 $domains = {.viola-testbed.de, .i2cat.viola-testbed.de, ...}

4 foreach ($domain in $domains) {

5 if (!$tna) $tna = getTNA($nameOrIP + $domain));

6 }

7 }

8 return $tna;

Code 4.4.3: DNS resolving algorithm

Using this approach the following user input can be resolved to TNA 10.7.12.108 (see Code 4.4.3):

 Line 1: 10.0.0.72 (input: IP)

 Line 1: zam668.viola-testbed.de (input: FQDN)

 Line 2: 10.7.12.108 (input: TNA)

 Line 5: zam668 (input: name)

Important in this context is the fact that a single IP or FQDN could be bound to more than one TNA address. In

the current implementation the first TNA found will be returned. If the user wants to use a specific port, he still

needs to identify it using the corresponding TNA. Also, since this solution is implemented on the client side

only, it is not a feature of the Harmony Service Interface itself.

Network Service Plane Enhancements

Project: Phosphorus

Deliverable Number: D1.8
Date of Issue: 30/09/2008

EC Contract No.: 034115
Document Code: <Phosphorus-WP1-D1.8v1>

30

Network Service Plane Enhancements

Project: Phosphorus

Deliverable Number: D1.8
Date of Issue: 30/09/2008

EC Contract No.: 034115
Document Code: <Phosphorus-WP1-D1.8v1>

31

8 Conclusions and Outlook

In the second phase of the Phosphorus project, a number of enhancements have been added that increase the

stability, usability and performance of the system. In this document, we have described these enhancements in

the prototype code that is delivered.

While in the face of the rather short development time, great achievements have been made regarding the NSP

implementation, some key issues were not addressable in this time:

 Point-to-Multipoint: While the interface was designed to be point-to-multipoint capable, the core code

assumes that there is only a single destination endpoint at several places. Adding the point-to-

multipoint capability here would be a complex task.

 Modification Request: Some underlying technologies allow the seamless changing of the reserved

bandwidth on a given port. Including this facility into the Service Plane Interface would allow to

dynamically modify the reserved bandwidth for a switched path. Using this request in particular in

connection with Malleable Reservations could enhance the average utilization of a link.

 WS-Agreement: In a distributed service-oriented computing environment, service consumers like to

obtain guarantees related to services they use, often related to quality of a service. Whether service

providers can offer – and meet – guarantees usually depends on their resource situation at the

requested time of service. The objective of the WS-Agreement specification is to define a language and

a protocol for advertising the capabilities of providers and creating agreements based on creational

offers, and for monitoring agreement compliance at runtime. Offering this interface would better meet

the co-allocation requirements of Grid level scheduler to coordinate resource management systems

located in different domains.

 Jobs: Support for grouping reservations to so-called “jobs”, allowing the middleware to cancel or

commit to reservations that comprise a complex workflow is an interesting, but not essential feature.

Therefore, it was put on hold in favour of other, more important enhancements.

 Translator: Interfacing other projects, like G-lambda, AutoBAHN, or IDC require the development of a

bidirectional Gateway that translates reservation requests and handles the topology exchange. First

experiences were made writing a Translator for the Inter Domain Controller and the first demonstration

is planed for November 2008.

Network Service Plane Enhancements

Project: Phosphorus

Deliverable Number: D1.8

Date of Issue: 30/09/2008
EC Contract No.: 034115

Document Code: <Phosphorus-WP1-D1.8v1>

 32

Network Service Plane Enhancements

Project: Phosphorus

Deliverable Number: D1.8
Date of Issue: 30/09/2008

EC Contract No.: 034115
Document Code: <Phosphorus-WP1-D1.8v1>

33

9 References

[GAAA-tk] http://staff.science.uva.nl/~demch/projects/aaauthreach/index.html

[WSS] http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

[SAML] http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security

[XACML] http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml

[xmldsig] http://www.w3.org/TR/xmldsig-core/

[xmlenc] http://www.w3.org/TR/xmlenc-core/

[apache-xml-security] http//santuario.apache.org

[java-sun] http://www.sun.com/java/

[Phosphorus-D1.6] Phosphorus Deliverable 1.6: “Planning and report on functional tests, and prototype for NRPS,

Grid GMPLS control plane and middleware interoperability”.

[Phosphorus-D1.4] Phosphorus Deliverable 1.4: “Definition and development of the Network servie Plane and

northbound interfaces development”.

http://staff.science.uva.nl/~demch/projects/aaauthreach/index.html
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

Network Service Plane Enhancements

Project: Phosphorus

Deliverable Number: D1.8
Date of Issue: 30/09/2008

EC Contract No.: 034115
Document Code: <Phosphorus-WP1-D1.8v1>

34

10 Acronyms

AAI Authentication and Authorization Infrastructure

AuthN Authentication

AuthZ Authorization

GAAA-tk Generalized Authentication, Authorization and Accounting Tool Kit

HAL Harmony Adaptation Layer

HNA Harmony NRPS Adapter

HSI Harmony Service Interface

IDB Inter-Domain Broker

MLS Message Level Security

NRPS Network Resource Provisioning System

NSP Network Service Plane

RDBMS Relational Database Management System

TNA Transport Network Address

WSS Web-Service Security

