

SIP-based service virtualization for future IT services and applications over high speed optical networks

<u>Franco Callegati</u>, Aldo Campi, Walter Cerroni D.E.I.S. - University of Bologna

Georgios Zervas, Reza Nejabati, Dimitra Simeonidou

Photonic Network Lab - University of Essex

Actors

- IT applications
 - Multi-data flow, multimedia, highly distributed
 - Application specific signalling
 - QoS requirements
 - Intrinsically state-full
- High speed optical networks
 - Provide coarse (fiber/wavelength) and fine (Optical Burst and Packet Switching) bandwidth granularity
 - Have their own control plane (typically GMPLS)
 - Tend to be "connection oriented"

Motivations

- Users and applications see services
 - Storage space
 - User communication facilities
 - Computing resources

- ...

- Networks (and network control plane) see data flows and connections
 - Lightpath, burst, packet flow ...

• To do

- Easy access to the network resources for the user and the application
 - Virtualization

. . .

۲

- Authomatic provisioning and QoS management
 - ECOC 2007 WS7 16/09/2007

The proposed solution

- Introduce session control in the network
 - Services are mapped into sessions
 - The network has the ability to manage the sessions
- The objective
 - De-couple applications issues from networking issues
 - One session many connections
 - One connection many sessions
 - Redirect, suspend and retrive, ...
- By introducing the session layer
 - The network acquires the capability to understand the application instances expressed by means of session attributes
 - Network services (bandwitdh, QoS, etc...) are oriented to the application requirements and not simply to the connections attributes

App

Connection(s)

Dialog(s)

Session(s)

Connection(s)

How can we implement it?

- Session Initiation Protocol (SIP)
 - IETF standard application layer protocol
 - Hundreds of RFCs to date
 - Independent of the networking technology
 - Transaction-oriented (state full)
 - Based on domains
 - User location \rightarrow personal mobility
 - Security (AAA)
- SIP is purely a mechanism to manage sessions
- SIP does not provide services
 - SIP provides primitives that can be used to implement services
 - Example: locate a user and deliver an opaque object to his current location

What have we done?

- Demonstrating application layer functionality into the transport layer by means of the session layer
 - Case study: grid applications
- How it happened
 - OBS test-bed at University of Essex
 - Embedded electronic network processing for OBS routers
 - SIP programming capabilities at University of Bologna
 - Unibo staff mobility at UEssex supported by e-Photon/ONe

The problems ...

- SIP is used to
 - Carry application related information (JSDL, RDF)
 - Discover resources and establish communication sessions
 - Pass to the OBS control plane (JIT) the information to establish connections in the transport plane
 - Manage the ongoing sessions transparently for the application
- But ... several alternatives exists and decision have to be taken
 - Alternatives to transport the SIP signalling
 - Distribution and intelligence of the SIP proxy
 - Distribution of service related information among SIP domains

Network Architectures

- Overlay
 - Session and transport layers are separated
 - Logically
 - Physically
 - Session management function in the OBS edge node
- Integrated
 - Session management function with "full" functional SIP proxy in the OBS edge and core node
- Partially integrated
 - "Full" set of session management function integrated in the OBS edge node
 - Limited subset of session management function integrated in the OBS core node

Overlay

- Both physical and logical separation between the SIP layer and the optical transport network
 - IP legacy network carrying the SIP messages is used for the signalling
 - OBS network is used only for data transmission.
- The SIP-Grid proxies
 - on top of OBS edge routers
 - request a data path between the edge routers involved in the session

(Partially) Integrated

- Enriches the optical control plane with SIP functionalities
 - SIP messages are sent over the OBS control plane
- All OBS nodes must have the capability to read, parse and forward SIP messages
 - Intelligent Edge SIP-G proxies
 - Light Core SIP-G proxies

To do what?

- Grid users and resources act as SIP user agents
- SIP is used to
 - Discover and reserve resources
 - 1 phase or 2 phases
 - Interact with OBS control plane to establish the physical connection
 - Anycast, re-route, ...
- The SIP proxy has been enriched with
 - SIP-OBS Middleware to interact with OBS (JIT)
 - Capabilities to embed and partially parse application specific messages (JSDL, RDF, ...)

Resource discovery (localized approach)

Resource discovery (distibuited approach)

Resource discovery and Reservation

Testbed results

Conclusions

- Results
 - Development of resource discovery
 - Development of reservation of both network resources (e.g. bandwidth) and non-network resources (e.g. computing resources)
- Developed modules applicable to different transport techonologies with minor adjustments
- Key message: the proposed solution is
 - Feasible
 - Flexible
 - Scalable

